на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Расчет и проектирование выпарной установки непрерывного действия для выпаривания водного раствора CuSO4
p align="left">Аппарат работает при более интенсивной естественной циркуляции, обусловленной тем, что циркуляционная труба не обогревается, а подъёмный и опускной участки циркуляционного контура имеют значительную высоту.

Выносная греющая камера легко отделяется от корпуса аппарата, что облегчает и ускоряет ее чистку и ремонт. Ревизию и ремонт греющей камеры можно производить без полной остановки аппарата(а лишь при снижении его производительности), если присоединить к его корпусу две камеры.

Конструкция теплообменных аппаратов выбирается на основе расчета по определению поверхности теплопередачи.До температуры кипения исходный раствор подогревается в отдельном теплообменнике за счет тепла греющего пара, что позволяет избежать увеличения поверхности. Кожухотрубчатые теплообменники относятся к числу наиболее часто применяемых, который состоит из корпуса и приваренного к нему трубных решеток. В теплообменнике одна среда движется внутри труб, а другая в межтрубном пространстве. Среды направляются противотоком друг к другу. Раствор подаётся снизу вверх, а насыщенный водяной пар в противоположном направлении. Такое направление движения каждой среды совпадает с направлением, в котором стремится двигаться данная среда под влиянием изменения её плотности при нагревании. Кроме того, при указанном направлении движения сред достигается более равномерное распределение скоростей и идентичные условия теплообмена по площади поперечного сечения аппарата.

Вторичный пар из последнего корпуса (в данном случае второго) отводится в барометрический конденсатор, в котором при конденсации пара создается требуемое разряжение. Сухой полочный барометрический конденсатор работает при противоточном движении охлаждающей воды и пара. Воздух и неконденсирующиеся газы, попадающие в установку главным образом с охлаждающей водой (в конденсаторе), а также через неплотности трубопроводов отсасываются через ловушку-брызгоулавливатель вакуум-насосом.

С помощью вакуум-насоса поддерживается также устойчивый вакуум, так как остаточное давление в конденсаторе может изменяться с колебанием температуры воды, поступающей в конденсатор.

2.3 Принцип действия проектируемой установки

Технологическая схема выпарной установки показана на листе 1 графической части. Исходный разбавленный раствор с концентрацией 4 % масс и температурой 25 0С из промежуточной емкости центробежным насосом подаётся в теплообменник (ГОСТ 15118-79), где подогревается до температуры близкой к температуре кипения, а затем в выпарную установку (ГОСТ 11987-81). Предварительный подогрев раствора производится насыщенным водяным паром.

Выпарной аппарат обогревается свежим водяным паром. Вторичный пар, образующийся при концентрировании раствора, направляется в барометрический конденсатор.

Самопроизвольный перетек раствора и вторичного пара в корпусе возможен благодаря общему перепаду давлений, возникающему в результате создания вакуума конденсацией вторичного пара, а в барометрическом конденсаторе смешения (где заданное давление поддерживается подачей охлаждающей воды и отсосом неконденсирующихся газов вакуум-насосом). Смесь охлаждающей воды и конденсата выводится из конденсатора при помощи барометрической трубы с гидрозатвором. Образующийся концентрированный раствор центробежным насосом подаётся в промежуточную емкость упаренного раствора концентрацией 19 % масс.

Конденсат греющего пара из выпарного аппарата выводится с помощью конденсатоотводчика.

Важное значение имеет охрана окружающей среды. Поэтому необходимо строгое соблюдение технологии очистки сточных вод, отходящих газов и т.д. Целесообразно применение мер профилактики по предотвращению опасных выбросов.

3. РАСЧЕТ ОСНОВНОГО ОБОРУДОВАНИЯ

3.1 Определение поверхности теплопередачи выпарного аппарата

Поверхность теплопередачи выпарной установки определяют по основному уравнению теплопередачи:

F=Q/(K*Дtп). (3.1)

Для определения тепловой нагрузки Q, коэффициента теплопередачи К и полезной разности температуры ?t(n) необходимо знать распределение упариваемой воды, концентрации растворов и их температуры кипения. Эти величины находят методом последовательных приближений.

Первое приближение:

Производительность установки по выпариваемой воде определяют из уравнения материального баланса:

W=Gн *(1-хн/хк). (3.2)

Подставив, получим:

18 т/ч =5 кг/с

W=5(1-4/19) =3,95 кг/с

3.1.1 Концентрации упариваемого раствора

Распределение концентраций раствора по корпусам установки зависит от соотношения нагрузок по выпариваемой воде в каждом аппарате. В первом приближении на основании практических данных принимают, что производительность по выпариваемой воде распределяется между корпусами в соответствии с соотношением: w1:w2=1,0:1,1.

Тогда:

w1=1,0W/(1,0+1,1)=3,95/2,1=1,88 кг/с

w2=1,1W/(1,0+1,1)=4,345/2,1=2,068 кг/с

Далее рассчитываем концентрации растворов в корпусах:

х1=Gн*хн/(Gн-w1)=5*0,04/(5-1,88)=0,064, или 6,4%

х2=Gн*хн/(Gн-w1-w2)= 5*0,04/(5-1,88-2,068)=0,19, или 19%

Концентрация раствора в последнем корпусе х2 соответствует заданной концентрации упаренного раствора.

3.1.2 Температура кипения раствора

Принимаем, что обогрев производится греющим паром - насыщенным водяным паром давлением Рг1=4 ат или 0,3924 МПа.

Общий перепад давлений в установке равен:

ДРоб=Рг1-Рбк=0,3924-0,011=0,3814 МПа.

По давлениям паров находим их температуры и энтальпии:

Р, МПа. t, °C. I, кДж/кг.

Рг1=0,3924 tг1=142,9 I1=2744

Рг2=0,2017 tг2=120,3 I2=2711

Рбк=0,011 tбк=47,42 Iбк=2585

При определении температуры кипения раствора в аппарате исходим из следующих допущений. Распределение концентраций раствора в выпарном аппарате с естественной циркуляцией практически соответствует модели идеального перемешивания. Поэтому концентрацию кипящего раствора принимаем равной конечной в данном корпусе и, следовательно, температуру кипения раствора определяем при конечной концентрации.

Изменение температуры кипения по высоте кипятильных труб происходит вследствие изменения гидростатического давления столба жидкости, температуру кипения раствора в корпусе принимаем соответствующей температуре кипения в среднем слое жидкости. Таким образом, температура кипения раствора в корпусе отличается от температуры греющего пара в последующем корпусе на сумму температурных потерь УД от температурной (Д'), гидростатической (Д") и гидродинамической (Д'") депрессий:

УД=Д'+Д"+Д'"

Гидродинамическая депрессия обусловлена потерей давления пара на преодоление гидравлических сопротивлений трубопроводов при переходе из корпуса в корпус. Обычно в расчетах принимают Д"'=1,0 -1,5 °С на корпус.

Примем Д'"=1,0 °С.

Тогда температура вторичных паров в корпусах равна:

tвп1=tг2+Д1'"=120,3+1,0=121,3°С;

tвп2=tбк+ Д2'"=47,42+1,0=48,42°С;

Сумма гидродинамических депрессий

У Д'"=1+1=2, °С

По температурам вторичных паров определим их давления. Они равны соответственно (в МПа): Рвп1=0,208 МПа; Рвп2=0,0115 МПа.

Определяем гидростатическую депрессию. Давление в среднем слое кипящего раствора Pср равно:

Рср=Рвп+с•g•Н•(1-е)/2, (3.4)

где Н - высота кипятильных труб в аппарате, м; с- плотность кипящего раствора, кг / куб.м; е - паронаполнение (объемная доля пара в кипящем растворе), куб.м/куб.м.

Для выбора значения Н необходимо ориентировочно оценить поверхность теплопередачи выпарного аппарата Fop. При кипении водных растворов можно принять удельную тепловую нагрузку аппаратов с естественной циркуляцией q=20000-50000 Вт/кв.м.

Примем q=40000 Вт/кв.м. Тогда поверхность теплопередачи ориентировочно равна: Fop=Q/q=w1•r1/q=1,88•2187•103/40000=102,79 м2.

где r1- теплота парообразования вторичного пара, Дж/кг, r1=2187 кДж/кг.

По ГОСТ 11987-81 трубчатые аппараты с естественной циркуляцией и выносной греющей камерой состоят из кипятильных труб высотой 4 и 5м при диаметре dн=38 мм и толщине стенки дст=2 мм.

Примем высоту кипятильных труб Н=4 м. При пузырьковом (ядерном) режиме кипения паронаполнение составляет е=0,4-0,6.

Примем е =0,5. Плотность водных растворов, в том числе раствора CuSO4 при температуре 25 °С и соответствующих концентрациях в корпусах равна:

с1=1063 кг/м3

с2=1218 кг/м3

При определении плотности растворов в корпусах пренебрегаем изменением ее с повышением температуры от 25°С до температуры кипения ввиду малого значения коэффициента объемного расширения и ориентировочно принятого значения е.

Давления в среднем слое кипятильных труб корпусов (в Па) равно:

Р1ср=Рвп1+с1•g•Н•(1-е)/2=208000 +1063•9,81•4•(1-0,5)/2=0.2184 МПа

Р2ср=Рвп2+с2•g•Н•(1-е)/2=11400 +1218•9,81•4•(1-0,5)/2=0,0231 МПа

Этим давлениям соответствуют следующие температуры кипения и теплоты испарения растворителя:

Р, Мпа. t, °C. r, кДж/кг.

Р1ср=0,2184 tcp1=122,6 rвп1=2187

Р2ср=0,0231 tcp2=62,85 rвп2=2344

Определим гидростатическую депрессию по корпусам (в °С):

Д"1=tcp1-tвп1=122,6-121, 3 =1,3°С.

Д"2=tcp2-tвп2=62,85-48,42=14,43°С

Сумма гидростатических депрессий:

У Д"= Д1"+ Д2"=1,3+14,43=15,73°С

Температурную депрессию Д' определим по уравнению Тищенко:

Д'=1,62•10-2•Д'атм•(Т2)/rвп, (3.5)

где Т - температура паров в среднем слое кипятильных труб, К; Д'атм - температурная депрессия при атмосферном давлении.

Находим значение Д'атм1= 0,192 °С; Д'атм2=0,57 °С.

Д'1=1,62•10-2•Д'атм1•(Т12)/rвп1;

Д'1=1,62•10-2• (122,6+273)2 •0,192/2187 =0,22 °С;

Д'2=1,62•10-2•Д'атм2•(Т22)/rвп2;

Д'2=1,62•10-2•(66+273)2•0,57/2344=0,44 °С.

Сумма температурных депрессий:

УД'=Д'1+Д'2=0,22+0,44=0,66°С

Температуры кипения растворов равны (в °С):

tк1=tг2+Д'1+Д"1+Д'"1=120,3+0,22+1,3+1=122,82 °С

tк2= tбк+Д'2+Д"2+Д'"2=47,42+0,44+14,43+1=63,29 °С

3.1.3 Полезная разность температур

Общая полезная разность температур равна:

УДtп=Дtп1+ Дtп2

Полезные разности температур по корпусам (в °С) равны:

Дtп1=tг1-tкl=142,9-122,82=20,08°С

Дtп1=tг1-tкl=120, 3-63,29=57,01°С

Тогда общая полезная разность температуры равна:

УДtп=20,08+57,01=77,09 °С.

Проверим общую полезную разность температуры:

УДtп=tг1-tбк-(УД'+УД"+УД'")=142,9-47,42-(0,66+15,73+2)=77,09°С

3.1.4 Определение тепловых нагрузок

Расход греющего пара, производительность каждого корпуса по выпаренной воде и тепловые нагрузки по корпусам определим путем совместного решения уравнений тепловых балансов и уравнения баланса по воде для всей установки:

Q1=D•(Iг1-i1)=1,03•[Gн•Сн•(tк1-tн)+w 1•(Нвп1-Св•tк1)+Qконц1]; (3.6)

Q2= w1•(Iг2-i2)=1,03•[(Gн- w1)•С1•(tк2-tк1)+w 2•(Iвп2-Св•tк2)+Qконц2]; (3.7)

где 1,03 - коэффициент, учитывающий 3% потерь тепла в окружающую среду;

Сн, С1 - теплоемкости растворов соответственно исходного и в первом корпусах. кДж/(кг*К); Сн =4.14кДж/(кг*К), С1=3.994кДж/(кг*К).Св- теплоемкость воды, кДж/(кг*К).;tн - температура кипения исходного раствора при давлении в корпусе,0С; D- расход греющего пара, кг/с;

При решении уравнения можно принять:

Iвп1 ? IГ2; Iвп2 ? Iбк;

Qконц1, Qконц2-теплоты концентрирования по корпусам, кВт; так как эти величины имеют небольшое значение, то ими пренебрегаем.

Q1=D•(2744-104.6)=1,03•[5•4.14•(122.82-122.6)+w1•(2711-4,19•122.82)]

Q2=w1•(2711-516.1)=1,03[(5-w1)•3,994•(63.29-122.82)+w2•(2585-4.19•63.29)]

W=w1+w2=3.95

Решение этой системы уравнений дает следующие результаты:

D=2.384 кг/с; w1=1.859 кг/с; w2=2.091 кг/с;

Q1=6292 кВт; Q2=4080 кВт

Результаты расчета сведены в табл. 1.

Таблица 1

Параметр

Корпус

1

2

Производительность по испаряемой воде, щ, кг/с

Концентрация растворов х, %

Давление греющих паров Рг., МПа

Температура греющих паров tг °С

Температурные потери У Д, град

Температура кипения раствора tк°С

Полезная разность температур Дtп град

1.859

6.4

0.3924

142.9

2.52

122.82

20.08

2.091

19

0.2017

120.3

15.87

63.29

57.01

Страницы: 1, 2, 3, 4, 5



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.