на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Розділення і виявлення катіонів Hg(II), Cd(II), Bi(III), Pb(II), Cu(II) методами аналітичної хім

Розділення і виявлення катіонів Hg(II), Cd(II), Bi(III), Pb(II), Cu(II) методами аналітичної хім

26

ВСТУП

Аналітимчна хіммія -- розділ хімії, що розглядає принципи і методи визначення хімічного складу речовини. Виникла поряд із неорганічною хімією раніше від інших хімічних наук. Якісний аналіз визначає ідентичність речовини в даній вибірці; кількісний аналіз визначає, скільки там є даної речовини.

Аналітична хімія складається з двох розділів:

Якісний аналіз - встановлює з яких елементів (або йонів) складається досліджувана речовина.

Кількісний аналіз -встановлює кількісний вміст елементів, йонів чи хімічних сполук, які входять до складу досліджуваних речовин, матеріалів.

Загальні питання аналітичної хімії:

аналітична хімія елементів і сполук;

пробопідготовка;

наукові принципи створення нових аналітичних систем, зокрема сенсорів;

спеціальні види аналізу (локальний, дистанційний, неруйнівний, безперервний у потоці, багатокомпонентний тощо).

Методи аналітичної хімії:

теоретичні основи методів хімічного аналізу;

розроблення нових і удосконалення наявних методик аналізу;

методи маскування, розділення і концентрування.

Об'єкти аналізу і аналітичний контроль виробництва:

аналіз металів і сплавів, неорганічних матеріалів, речовин високої чистоти, органічних речовин, гірських порід та мінеральної сировиниа, об'єктів природного середовища, біологічних об'єктів, лікарських препаратів, харчових продуктів тощо.

1. ОГЛЯД ЛІТЕРАТУРИ ПО ТЕМІ ОБ'ЄКТУ ДОСЛІДЖЕННЯ

1.1 Загальна характеристика металів

1.1.1 Мідь

Мідь - золотисто-рожевий пластичний метал, на повітрі швидко покривається оксидною плівкою, яка додає їй характерний інтенсивний жовтувато-червоний відтінок. Мідь володіє високою тепло- і електропровідністю (20 °C) 16.78 nЩ·m (займає друге місце по електропровідності після срібла). Має два стабільні ізотопи - 63Cu і 65Cu, і декілька радіоактивних ізотопів. Самий довгоживучий з них, 64Cu, має період напіврозпаду 12,7 ч і два різні варіанти розпаду з різними продуктами.

Існує ряд сплавів міді: латунь - сплав міді з цинком, бронза - сплав міді з оловом і деякі інші.

У з'єднаннях мідь може мати два ступені окислення: менш стабільний ступінь Сu2+ і набагато стабільнішу Сu2+, яка дає солі синього і синьо-зеленого кольору. У незвичайних умовах можна одержати з'єднання із ступенем окислення +3 і навіть +5. Остання зустрічається в солях купраборанового аніона Cu(B11H11) 23-, одержаних в 1994 році.

Мідь є необхідним елементом для всіх вищих рослин і тварин. У потоці крові мідь переноситься головним чином білком церулоплазміном.

Всі з'єднання міді токсичні. 30 г сульфату міді є летальною дозою для людини. Вміст міді в питній воді не повинен перевищувати 2 мг/л, проте недолік міді в питній воді також небажаний.

1.1.2 Ртуть

Ртуть - єдиний метал, рідкий при кімнатній температурі. Ртуть не володіє магнітними властивостями.

Ртуть - малоактивний метал (ряд напруг).

При нагріванні до 300 °C ртуть вступає в реакцію до киснем:

2Hg + O2 > 2HgO

Реакція розкладання оксиду ртуті історично є одним з перших способів отримання кисню.

Ртуть застосовується у виготовленні термометрів, парами ртуті наповнюються ртутно-кварцові і люмінесцентні лампи. Ртутні контакти служать датчиками положення. Крім того, металева ртуть застосовується для отримання цілого ряду найважливіших сплавів.

Бромід ртуті застосовується при термохімічному розкладанні води на водень і кисень (атомно-воднева енергетика).

Деякі з'єднання ртуті застосовуються як ліки, але в основному із-за токсичності ртуть була витиснена з медицини.

Пари ртуті, а також металева ртуть дуже отруйні, можуть викликати важке отруєння. По класу небезпеки вона відноситься до першого класу (надзвичайно небезпечна хімічна речовина).

1.1.3 Вісмут

Вісмут одержують сплавом сульфіду із залізом:

Bi2S3 + 3Fe = 2Bi + 3FeS

або послідовним проведенням процесів:

Bi2S3+ 5O2 = Bi2O4 + 3SO2;

Bi2O4 + 4C = 2Bi + 4CO.

Вісмут має велике значення для виробництва так званих «автоматних сталей», особливо неіржавіючих і дуже полегшує їх обробку різанням на верстатах-автоматах (токарних, фрезерних і ін.) при концентрації вісмуту всього 0,003 %, в той же час не збільшуючи схильність до корозії.

Деяке значення для виробництва детекторів ядерного випромінювання має монокристалічний йодид вісмуту. Германат вісмуту (BіGO) - сцинтиляційний матеріал, застосовується в ядерній фізиці, фізиці високих енергій, комп'ютерної томографії, геології.

Сплави вісмуту з кадмієм, оловом, свинцем, індієм, талієм, ртуттю, цинком і галієм, володіють дуже низькою температурою плавлення і застосовуються як теплоносії і припої, а так само в медицині як фіксуючі склади для зламаних кінцівок. Деякі легкоплавкі сплави застосовуються як елементи протипожежної сигналізації, як спеціальні мастила працюючих у вакуумі і важких умовах, як клапани (при розплавленні тих, що відкривають просвіт для протікання рідин і газів (наприклад ракетних палив).

Із з'єднань вісмуту в медичному напрямі найширше використовують його триокись Bi2O3. Зокрема, її застосовують у фармацевтичній промисловості для виготовлення багатьох ліків від шлунково-кишкових захворювань, а також антисептичних і загоюючих засобів.

Оксохлорид вісмуту знаходить застосування в медицині як рентгеноконтрастний засіб і як наповнювач при виготовленні кровоносних судин. Крім того в медицині знаходять широке застосування такі з'єднання вісмуту як: галат, тартрат, карбонат, субсаліцилат, субцитрат, трібромфенолят вісмуту. На основі цих з'єднань розроблена безліч медичних препаратів.

1.1.4 Свинець

Нітрат свинцю застосовується для виробництва могутніх сумішевих вибухових речовин. Теллурід свинцю широко застосовується як термоелектричний матеріал (термо-э.д.с 350 мкВ/К). Азид свинцю застосовується як найбільш широковживаний детонатор (що ініціює вибухову речовину). Перхлорат свинцю використовується для приготування важкої рідини (щільність 2,6) використовуваної в збагаченні, флотації руд, так само він іноді застосовується в могутніх сумішевих вибухових речовинах як окислювач. Фторид свинцю самостійно, а так само спільно з фторидом вісмуту, міді, срібла застосовується як катодний матеріал в хімічних джерелах струму. Вісмутат свинцю, сульфід свинцю, йодид свинцю застосовуються як катодний матеріал в літієвих акумуляторних батареях. Хлорид свинцю як катодний матеріал в резервних джерелах струму. Теллурід свинцю самий широковикористовуючий матеріал у виробництві термоелектрогенераторов і термоелектричних холодильників. Двоокис свинцю широко застосовується не тільки в свинцевому акумуляторі, але так само на її основі проводяться багато резервних хімічних джерел струму, наприклад - свинцево-хлорний елемент, свинцево-плавиковий елемент і ін.

Свинець і його з'єднання - токсичні. Потрапляючи в організм, свинець накопичується в кістках, викликаючи їх руйнування. ГДК в атмосферному повітрі з'єднань свинцю 0,003 мг/м2, у воді 0,03 мг/л, грунту 20,0 мг/кг. Викид свинцю в Світовий океан 430-650 тисяч т/рік.

1.1.5 Кадмій

Кадмій - сріблясто-білий м'який метал з гексагональними гратами.

Кадмій розташований в одній групі періодичної системи з цинком і ртуттю, займаючи проміжне місце між ними, тому деякі хімічні властивості цих елементів схожі.

Кадмій використовується як компонент твердих припоїв (сплавів на основі срібла, міді, цинку) для зниження їх температури плавлення.

Близько 20 % кадмію йде на виготовлення кадмієвих електродів, вживаних в акумуляторах (нікель-кадмієвих і срібно-кадмієвих), нормальних елементах Вестону, в резервних батареях (свинцево-кадмієвий елемент, ртутно-кадмієвий елемент і ін.

Близько 20 % кадмію використовується для виробництва неорганічних фарбувальних речовин (сульфіди і селеніди, змішані солі, наприклад, сульфід кадмію - кадмій лимонний).

Останніми роками кадмій став застосовуватися при створенні нових протипухлинних наномедикаментів.

Кадмій дуже добре захоплює теплові нейтрони і служить для виготовлення регулюючих стрижнів для атомних реакторів і як захист від нейтронів. Іноді ці властивості використовуються в експериментальних моделях протипухлинної терапії Neutron_Capture_Therapy.

Теплопровідність кадмію поблизу абсолютного нуля найвища серед всіх металів, тому кадмій іноді застосовується для криогенної техніки.

Пари кадмію, всі його з'єднання токсичні, що зв'язано, зокрема, з його здатністю зв'язувати сірковмісні ферменти і амінокислоти.

Симптоми гострого отруєння солями кадмію - блювота і судоми.

Кадмій - кумулятивна отрута (здатний накопичуватися в організмі).

Ізотопи

З восьми природних ізотопів кадмію шість стабільні, для двох ізотопів виявлена слабка радіоактивність. Це 113Cd (ізотопна поширеність 12,22 %, бета-розпад з періодом напіврозпаду 7,7Ч1015 років) і 116Cd (ізотопна поширеність 7,49 %, подвійний бета-розпад з періодом напіврозпаду 3x1019 років).

1.2 Хроматографія

Хроматографія фізико-хімічний метод розділення і аналізу сумішей, заснований на розподілі їх компонентів між двома фазами - нерухомої і рухомої (елюент), протікаючої через нерухому.

1.2.1 Історична довідка

Історична довідка. Метод розроблений в 1903 М. Кольором, який показав, що при пропусканні суміші рослинних пігментів через шар безбарвного сорбенту індивідуальні речовини розташовуються у вигляді окремих забарвлених зон. Одержаний таким чином пошарово забарвлений стовпчик сорбенту Колір назвав хроматограмой, а метод - Х. Внаслідок термин " хроматограма" стали відносити до різних способів фіксації результатів багатьох видів Х. Однак аж до 40-х рр. Х. не одержала належного розвитку. Лише в 1941 А. Мартін і Р. Синг відкрили метод розподільної Х. і показали його широкі можливості для дослідження білків і вуглеводів. У 50-і рр. Мартін і американський учений А. Джеймс розробили метод газорідинної Х.

1.2.2 Основні види хроматографії

Основні види Х. Залежно від природи взаємодії, що обумовлює розподіл компонентів між елюентом і нерухомою фазою, розрізняють наступні основні види Х. - адсорбційну, розподільну, іонообмінну, екськлюзіонну (молекулярно-ситову) і осадову. Адсорбційна Х. заснована на відмінності сорбуємості речовин адсорбентом, що розділяються (тверде тіло з розвиненою поверхнею); розподільна Х. - на різній розчинності компонентів суміші в нерухомій фазі (високо кипляча рідина, нанесена твердий макропористий носій) і елюенті (слід мати на увазі, що при розподільному механізмі розділення на переміщення зон компонентів частковий вплив робить і адсорбційна взаємодія аналізованих компонентів з твердим сорбентом); іонообмінна Х. - на відмінності констант іонообмінної рівноваги між нерухомою фазою (іонітом) і компонентами суміші, що розділяється; ексклюзіонна (молекулярно-ситова) Х. - на різній проникності молекул компонентів в нерухому фазу (високопористий неіоногенний гель). Экськлюзіонна Х. підрозділяється на гель-проникну (ГПХ), в якій елюент - неводний розчинник, і гель-фільтрацію, де елюент - вода.

Осадова Х, заснована на різній здатності компонентів, що розділяються, випадати в осад на твердій нерухомій фазі.

Відповідно до агрегатного стану елюенту розрізняють газову і рідинну Х. Залежно від агрегатного стану нерухомої фази газова Х. буває газо-адсорбционною (нерухома фаза - твердий адсорбент) і газорідинної (нерухома фаза - рідина), а рідинна Х. - рідинно-адсорбційної (або твердо-рідинної) і рідинно-рідинної. Остання, як і газо-рідинна, є розподільною Х. До твердо-рідинної Х. відносяться тонкошарова і паперова.

Розрізняють колоночну і площинну Х. У колоночній сорбентом заповнюють спеціальні трубки - колонки, а рухома фаза рухається усередині колонки дякуючи перепаду тиску. Різновид колоночной Х. - капілярна, коли тонкий шар сорбенту наноситься на внутрішні стінки капілярної трубки. Площинна Х. підрозділяється на тонкошарову і паперову. У тонкошаровій Х. тонкий шар гранульованого сорбенту або пориста плівка наноситься на скляну або металеву пластинки; у разі паперової Х. використовують спеціальний хроматографічний папір. У площинній Х. переміщення рухомої фази відбувається завдяки капілярним силам. При хроматографірованні можливо зміна за заданою програмою температури, складу елюента, швидкості його протікання і ін. параметрів.

Залежно від способу переміщення суміші, що розділяється, уподовж шару сорбенту розрізняють наступні варіанти Х.: фронтальний, проявник і витіснювальний. При фронтальному варіанті в шар сорбенту безперервно вводиться суміш, що розділяється, складається з газу-носія і компонентів, що розділяються, наприклад 1, 2, 3, 4, яка сама є рухомою фазою. Через деякий час після початку процесу найменше сорбуючий компонент ,випереджає інші і виходить у вигляді зони чистої речовини раніше всіх, а за ним у порядку сорбіруємості послідовно розташовуються зони сумішей компонентів: 1 + 2, 1 + 2 + 3, 1 + 2 + 3 + 4 (мал., а). При варіанті, проявника, через шар сорбенту безперервно проходить потік елюенту і періодично в шар сорбенту вводиться суміш речовин, що розділяється. Через певний час відбувається ділення початкової суміші на чисті речовини, розташовані окремими зонами на сорбенті, між якими знаходяться зони елюенту (мал., би). При витіснювальному варіанті в сорбент вводиться суміш, що розділяється, а потім потік газу-носія, що містить витіснювач (элюент), при русі якого суміш через деякий період часу розділиться на зони чистих речовин, між якими опиняться зони їх суміші (мал., в). Ряд видів Х. здійснюється за допомогою приладів, званих хроматографамми, в більшості з яких реалізується варіант, проявника, Х. Хроматографи використовують для аналізу і для препаратівного (в т.ч. промислового) розділення сумішей речовин. При аналізі розділені в колонці хроматографа речовини разом з елюентом потрапляють через різні проміжки часу у встановлене на виході з хроматографічної колонки пристрій, що детектує, реєструючи їх концентрації в часі. Одержану в результаті цього вихідну криву називають хроматограмою. Для якісного хроматографічного аналізу визначають час від моменту введення проби до виходу кожного компоненту з колонки при даній температурі і при використанні певного елюенту. Для кількісного аналізу визначають висоти або площі хроматографічних піків з урахуванням коефіцієнтів чутливості пристрою, що використовуваного детектує, до аналізованих речовин.

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.