на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Синтез нитробензойной кислоты
p align="left">Этот метод применяют в тех случаях, когда нитрующая смесь действует слишком слабо. Смесь нитратов щелочных металлов (KNO3, NaNO3, Ba(NO3)2) и серной кислоты содержит оба реагента обычной нитрующей смеси (HNO3 и H2SO4), отличаясь от нее, однако, тем, что в этом случае смесь не содержит воды, вводимой вместе с азотной кислотой, и вместе с тем содержит кислые сульфаты щелочных металлов, которые определенным образом влияют на реакцию нитрования.

Нитрование при помощи других нитрующих агентов.

Нитрование нитратами в присутствии уксусного ангидрида и уксусной кислоты.

В некоторых случаях для нитрования используют нитраты металлов, чаще всего меди, железа, марганца, кобальта и лития, в смеси с уксусным ангидридом. Преимуществом этого метода является возможность проведения реакции при низких температурах, без осмоления, а также возможность направлять вводимую нитрогруппу только в одно определенное положение. Например, из анилина при действии нитрата меди и уксусного ангидрида образуется только о- нитроацетанилид, при действии нитрата лития - только п- нитроацетанилид. Прибавление ледяной уксусной кислоты способствует более умеренному течению реакции. Часто уксусный ангидрид можно полностью заменить уксусной кислотой. Например, из фенола при действии безводной уксусной кислоты и нитрата меди образуется только о-нитрофенол.

Нитрование смесью азотной кислоты или азотной и серной кислот с уксусным ангидридом или уксусной кислотой.

Этот метод можно применять как для алифатических, так и для ароматических соединений. Таким образом нитруют, например, стеариновую кислоту и эфир янтарной кислоты.

При нитровании ароматических углеводородов в присутствии уксусной кислоты нитрогруппа направляется в боковую цепь. При энергичном нитровании реакция может сопровождаться окислением. Этим методом получают 3-нитро-4-оксибензальдегид из 4- оксибензальдегида.

Нитрование эфирами азотной кислоты.

Применение органических нитратов позволяет проводить реакцию нитрования в совершенно безводной среде, что иногда играет важную роль. Для этой цели прежде всего применяют алкилнитраты: метил-, этил-, бутил- и амилнитрат в нейтральной или даже щелочной среде. Они обладают ценной способностью растворять многие органические соединения. Нитрование осуществляется в присутствии алкоголятов калия или натрия. Вследствие низких температур кипения алкилнитратов избыток их легко удалять по окончании реакции.

Энергичными нитрующими агентами являются также ацетил- и бензоилнитраты (CH3COONO2, C6H5COONO2).

Бензол, толуол, нафталин, фенол и его эфиры, анилиды, хинолин и тиофен под действием ацетилнитрата дают мононитропроизводные с выходами, близкими к теоретическим. Преимуществом этого метода для производных бензола является возможность направления нитрогруппы почти исключительно в орто- положение. Ацетилнитрат исключительно чувствителен к действию влаги; кроме того, следует избегать его нагревания, так как это может привести к взрыву. Бензоилнитрат действует так же, как и ацетилнитрат, и обладает аналогичными свойствами; с эфирами фенолов он дает о- нитропроизводные с теоретическим выходом.

Нитрование азотистой кислотой и четырехокисью азота.

Многие органические соединения нитруются водными растворами азотистой кислоты, причем ее действие основывается на присутствии четырехокиси азота, являющейся энергичным нитрующим агентом.

Нитрование осуществляется действием водного раствора нитрита натрия в присутствии минеральных кислот (соляной или серной).

Газообразной четырехокисью азота можно непосредственно нитровать парафиновые углеводороды. Для этого смесь сухой N2O4 с парами углеводорода пропускают через нагретую стеклянную трубку, наполненную стеклянными кольцами. В результате реакции получаются производные не только нитруемого углеводорода, но и его низших гомологов, образующихся за счет разрыва цепи углеводородных атомов.

Безводная N2O4 с трудом реагирует с бензолом, но в присутствии избытка концентрированной серной кислоты при низких температурах легко нитрует ароматические углеводороды.

Способы получения одноосновных карбоновых кислот ароматического ряда

Одноосновные карбоновые кислоты ароматического ряда могут быть получены всеми общими способами, известными для кислот жирного ряда.

Окисление алкильных групп гомологов бензола. Это один из наибо-лее часто применяемых способов получения ароматических кислот:

Окисление проводят либо при кипячении углеводорода с щелочным раствором перманганата калия, либо при нагревании в запаянных трубках с разбавленной азотной кислотой. Как правило, этот метод дает хорошие результаты. Осложнения бывают только в тех случаях, когда при действии окислителей разрушается бензольное кольцо.

Окисление ароматических кетонов. Ароматические кетоны легко получаются реакцией Фриделя -- Крафтса. Окисление обычно ведут с помощью гипохлоритов по схеме:

Однако могут быть использованы и другие окислители. Ацетопроизводные окисляются легче, чем углеводороды.

Гидролиз тригалогенопроизводных с галогенами у одного углерод-ного атома. При хлорировании толуола образуется три вида хлоропроизводных: хлористый бензил (идет для получения бензилового спирта), хло-ристый бензилиден (для получения бензойного альдегида), бензотрихлорид (перерабатывается в бензойную кислоту и в хлористый бензоил). Непосредственный гидролиз бензотрихлорида идет плохо. Поэтому бензотрихлорид нагреванием с бензойной кислотой превращают в хлористый бензоил, который далее при гидролизе легко дает бензойную кислоту:

Гидролиз нитрилов:

Этот способ широко применяется в жирном ряду. В ароматическом ряду исходные нитрилы получают из диазосоединений, из галогенопроизводных обменом с цианидом меди в пиридине или сплавлением сульфонатов с цианидом калия. Нитрилы кислот с нитрильной группой в боковой цепи получают обменной реакцией из галогенопроизводных.

Реакция ароматических углеводородов с галогенопроизводными угольной кислоты. Карбоксильную группу можно ввести в ядро посредст-вом реакции, аналогичной синтезу кетонов по Фриделю -- Крафтсу. Ка-тализатором служит хлорид алюминия:

Реакции металлорганических соединений с СО2:

Обычно исползуются литий- или магнийорганические соединения.

Химические свойства

Ароматические кислоты вступают во все те реакции, которые свойст-венны и кислотам жирного ряда. Реакциями с участием карбоксильной группы получают различные производные кислот. Соли получают действием кислот на карбонаты или щелочи.Эфиры -- нагреванием смеси кислоты и спирта в присутствии ми-неральной (обычно серной) кислоты:

Если заместителей в орто-положении нет, то этерификация карбокси-льной группы происходит так же легко, как в случае алифатических кис-лот. Если одно из орто-положений замещено, скорость этерификации сильно уменьшается, а если оба орто-положения заняты, этерификация обычно не идет (пространственные затруднения).

Эфиры орто-замещенных бензойных кислот могут быть получены ре-акцией солей серебра с галогеналкилами (эфиры пространственно затрудненных ароматических кислот легко и количественно омыляются в присутствии краун-эфиров). Вследствие пространственных затруднений они с трудом подвергаются гидролизу. Группы большие, чем водород, в такой степени заполняют пространство вокруг углеродного атома карбоксильной группы, что затрудняют образование и омыление эфира.

Гидролиз эфиров ароматических кислот, так же как и гидролиз эфиров алифатических кислот, идет как в кислой, так и в щелочной среде. При проведении гидролиза в щелочной среде электроноакцепторные заме-стители увеличивают скорость гидро-лиза, а электронодонорные замедля-ют реакцию. В связи с этим констан-та с в уравнении Гаммета для реакционных серий м- и п-замещеных эфиров имеет положительное значение. Зависимость констант ско-рости гидролиза от величин у пред-ставлена:

Хлорангидриды получают действием на кислоты хлористого тионила или пентахлорида фосфора:

Ангидриды получают перегонкой смеси кислоты с уксусным ангид-ридом в присутствии фосфорной кислоты или действием хлорангидридов на соли:

При действии хлористого бензоила на пероксид натрия получается кристаллический пероксид бензоила:

При действии алкоголята на пероксид бензоила получается соль надбензойной кислоты (гидропероксид бензоила). Эта кислота применяется для получения оксидов из непредельных соединений (реакция Прилежа-ева):

Декарбоксилирование. При сплавлении соли ароматической карбоновой кислоты со щелочью карбоксильная группа замещается водородом. Обычно в качестве реагента берут натронную известь:

Некоторые сведения о природе бензольного кольца дают реакции, сопровождающиеся разрывом двойных С--С-связей. Так, например, равноценность углерод-углеродных связей в бензольном кольце доказана восстановительным озони-рованием о-ксилола. В результате этой реакции получают все три возможных продукта окисления - глиоксаль, метилглиоксаль и диацетил в соотношении, соответственно 3:2:1, что свидетельствует о том, что с равной степенью вероятности расщепляется любая из С--С-связей бензольного кольца:

Бензол в отсутствие катализатора не реагирует с бромом и хлором, демонстрируя тем самым устойчивость трех двойных связей в его молекуле к действию электрофильных агентов. В то же время наличие последних подтверждается взаимодейст-вием бензола с хлором при облучении, приводящим к образованию гексахлорциклогексана (гексахлоран):

Интересная реакция с участием двойных связей наблюдается при облучении бензола в жидкой фазе светом с дли-ной волны 253,7 нм. В этих условиях молекула бензола перестраивается, превращаясь в так называемые валентные изомеры.

Таким образом, были получены три структуры из тех, которые предлагались ранее для бензола. Оказалось, что они резко отличаются по свойствам от последнего: легко окисляются (в том числе водным раствором перманганата), бурно реагируют с бромом.

В молекуле бензола сопряженные двойные связи в отличие от таковых в диенах и других сопряженных системах устойчивы к действию водорода в момент выделения. Однако в присутствии катализаторов гид-рирования (платина, никель) бензол превра-щается в циклогексан:

Эта реакция не только подтверждает строение бензола (на-личие циклогексанового скелета и трех тг-связей), ее применяют также для оценки энергии его молекулы.

Ранее на примере алкенов и алкадиенов было показано, как для такой цели используют определение теплот гидрирования.

Измерение теплоты гидрирования бензола показало, что она составляет 206 кДж/моль, т. е. су-щественно меньше, чем утроенное значение теплоты гидриро-вания циклогексена (119 кДж/моль х 3 = 357 кДж/моль). Отсю-да следует, что молекула бензола обладает меньшей энергией, чем можно было ожидать, от циклогексатриена. Разность указан-ных значений (357-206 кДж/моль) составляет ~ 150 кДж/моль и называется энергией стабилизации или резонанса.

Сходная картина наблюдается при сравнении значений теплот сгорания бензола, вычисленных по аддитивной схеме и найден-ных экспериментально. Соответствующая разность оказалась равной 159 кДж/моль. Таким образом, определение энергии стабилизации (резонанса) молекулы бензола двумя независимыми путями дало практически совпадающие результаты.

Замещенные одноосновные ароматические кислоты

Нитробензойные кислоты

При нитровании бензойной кислоты получается 78%-мета-, 20% орто- и 2% пара-нитробензойных кислот. Два последних изомера без примесей других изомеров получают окис-лением орто- и пара- нитротолуолов.

Нитробензойные кислоты обладают более сильными кислотными свойствами, чем бен-зойная кислота = 6,6·10-5): о-изомер -- в 100 раз, м-изомер -- в 4,7 раза и п-изомер -- в 5,6 раза. Аналогичная закономерность наблюдается и в случае галогенозамещенных кислот.

Константы ионизации замещенных бензойных кислот

Заместитель

Положение

орто-

мета-

пара-

CH3

1.2·10-4

5.3·10-5

4.2·10-5

OH

1.1·10-3

8.3·10-5

3.3·10-5

OCH3

8.0·10-5

8.2·10-5

3.4·10-5

Br

1.4·10-3

1.5·10-4

1.0·10-4

Cl

1.2·10-3

1.5·10-4

1.0·10-4

NO2

6.7·10-3

3.1·10-4

3.7·10-4

Увеличение силы кислот с электроноакцепторными заместителями в п- и м-положении объясняется увеличением подвижности кислотного протона благодаря ослаблению связи О--Н (уменьшение электронной плотности)

Уравнение Гаммета было впервые использовано при изучении диссоциации м- и п-замещенных бензойных кислот. Для этой реакционной серии значение р было приняторавным 1 и, следовательно, уравнение Гаммета имело вид lgК/К0= сугде К -- константа скорости или константа равновесия для замещенного соединения; К0 -- аналогичная константа для незамещенного соединения; у -- константа, характеризу-ющая полярное влияние заместителя; с -- константа, определяющая степень чувствитель-ности реакционного центра к полярным эффектам. Константа у зависит только от природы заместителя, а константа с -- от характера реакции.

Соединения с различными заместителями, но с одним и тем же реакционным центром об-разуют реакционную серию.

у-Константы некоторых заместителей приведены в таблице:

Заместитель

у

Заместитель

у

Мета-

Пара-

Мета-

Пара-

-H

0

0

-I

0.352

0.18

-CH3

-0.069

-0.17

-OH

0.127

-0.37

-C2H5

-0.07

-0.151

-O

-0.708

-0.519

-C(CH3)3

-0.1

-0.197

-OCH3

0.115

-0.268

-CF3

0.43

0.54

-NH2

-0.16

-0.66

-COOH

0.355

0.265

-NHCOCH3

0.21

0

-COO-

-0.1

0

-N(CH3)2

-0.211

-0.83

-COOC2H5

0.37

0.45

-N(CH3)3

0.88

0.82

-C0CH3

0.376

0.502

-NO2

0.71

0.778

-F

0.337

0.062

-SO2

0.05

0.09

-CI

0.373

0.227

-SO2NH2

0.46

0.57

-Br

0.391

0.232

у-Константа положительна, если заместитель оттягивает электроны, и отрицательна, если заместитель является доно-ром электронов.

В зависимости от механизма реакции величина с также принимает положительные или отрицательные значения. Она положительна, если увеличение скорости реакции вызвано уменьшением электронной плотности в реакционном центре, и отрицательна, если увеличе-ние скорости реакции связано с возрастанием электронной плотности в реакционном центре. Таким образом, по знаку с можно судить о механизме реакции.Для определения величины с достаточно изучить кинетику превращений ряда соедине-ний, входящих в данную реакционную серию. Для всех других соединений серии можно рассчитывать константы скорости реакции, ис-пользуя значения у из таблицы. В настоящее время используется несколько систем реакционных констант у, учитываю-щих более тонкие взаимные влияния атомов. Установление возможности применения различных корреляционных уравнений называ-ется корреляционным анализом.

Для у-замещенных соединений простая корреляция обычно не наблюдается, так как у-заместители влияют друг на друга не только индукционно, но и различными другими спосо-бами (стерический эффект, водородная связь, эффект поля и т. д.).

Корреляционный анализ используется в органической химии для установления механиз-ма реакций, строения реагирующих веществ.

Заместители в о-положении действуют более сложно. Определенную роль играет здесь образование водородной связи. Последним можно объяснить большую силу салициловой кислоты по сравнению с бензойной (в 17 раз):

Нитрование бензойной кислоты проводят в довольно жестких условиях нагреванием с такими реагентами, как дымящая азотная кислота, крепкая нитрующая смесь, смесь нитрата Щелочного металла с концентрированной серной кислотой. Как при нитровании нитробензола, реакция приводит к образованию смеси нитропроизводных, в которой преобладает м-изомер, а п-изомер содержится лишь в следовых количествах:

3.Обсуждение результатов

м-Нитробензойную кислоту можно получить при взаимодействии бензойной кислоты с нитратом калия в серной кислоте. Выпавший осадок содержит 78%-мета-, 20% орто- и 2% пара-нитробензойных кислот. Очищать м-нитробензойную кислоту можно двумя способами:

I Осадок переносим в колбу для перегонки с водяным паром и отгоняем непрореагировавшую бензойную кислоту.

м-Нитробензойную кислоту очищаем в виде бариевой соли. Для этого сырую кислоту растворяем в 20-кратном по массе количестве воды и обрабатываем горячим раствором гидроксида бария до слабощелочной реакции. Затем добавляем воду и смесь кипятим до полного растворения осадка. Раствор фильтруем через воронку для горячего фильтрования, фильтрат охлаждаем и продукт отфильтровываем.

Для получения свободной кислоты бариевую соль кипятим с 10%-ной соляной кислотой. После охлаждения выпавшую м-нитробензойную кислоту отфильтровываем, промываем холодной водой и перекристаллизовываем из воды.

II Полученный осадок перекристаллизовываем сначала из этилового спирта, а затем из ацетона.

В результате получаем белый кристаллический порошок с Тпл=141-143. Литературная Тпл=140-141.

В трегорлую колбу, снабженную механической мешалкой и термометром, вносим серную кислоту и нагревают на водяной бане до 70 0С. Баню удаляем и при постоянном перемешивании постепенно маленькими порциями прибавляем бензойную кислоту и нитрат калия, внимательно следя за температурой, которая не должна превышать. 80 0С. Затем содержимое колбы нагреваем на водяной бане при 85...90 0С до тех пор, пока на поверхности реакционной массы не образуется масляный слой нитробензойной кислоты.

После охлаждения реакционную массу выливаем в холодную воду, выпавшую в осадок м-нитробензойную кислоту отфильтровываем, промываем сначала холодной водой, а потом несколько раз горячей. Очищаем по методике второго способа.

4. Экспериментальная часть

Синтез м-Нитробензойной кислоты.

4.1 Реагенты и оборудование

Реагенты: бензойная кислота, серная кислота (с=1,84г/см3),нитрат калия, этиловый спирт,

ацетон;

Оборудование:

4.2Методика эксперимента

В трехгорлую колбу, снабженную механической мешалкой и термометром, вносим 26мл серной кислоты и нагреваем на водяной бане до 70 0С. Баню удаляем и при постоянном перемешивании постепенно прибавляем смесь 10г бензойной кислоты и 20г нитрата калия, следя за температурой, которая не должна превышать. 80 0С. Затем содержимое колбы нагреваем на водяной бане при 85...90 0С до тех пор, пока на поверхности реакционной массы не образуется масляный слой нитробензойной кислоты. После охлаждения реакционную массу выливаем в холодную воду, выпавшую в осадок м-нитробензойную кислоту отфильтровываем, промываем сначала холодной водой, а потом несколько раз горячей.

Полученный осадок перекристаллизовываем сначала из этилового спирта, а затем из ацетона. В результате получаем белый кристаллический порошок с Тпл=141-1420С. Литературная Тпл=140-1410С. Выход 6,14г (45,2% от теоретического).

5.Выводы

Мною были изучены физические и химические свойства ароматических карбоновых кислот, их получение и применение. Проведена работа поиска и анализа необходимой литературы для получения м-нитробензойной кислоты. В результате был получен искомый продукт с достаточно высоким выходом и степенью чистоты. Вещество растворяется в этиловом спирте, ацетоне.

6.Библиография

Книги

1 Земцова М.Н. Методические указания к выполнению курсовой работы по

органической химии.

2. Химические реактивы и препараты Госхимиздат 1953, Стр. 241-242.

3. Карякин Ю.В., Ангелов И.И. Чистые химические вещества Изд. 4-е, пер. и доп. М.: Химия 1974, Стр. 121-122.

4. «Краткая химическая энциклопедия» Изд. Советская энциклопедия, Т.4 М. 1965 Стр. 817-826.

5. Петров А.А., Бальян Х.В., Трощенко А.Т. Органическая химия: Учебник для вузов. - СПб: «Иван Фёдоров», 2002, Стр. 421-427.

6. Гитис С.С., Глаз А.И., Иванов А.В.Практикум по органической химии: -М.: Высш шк., 1991. - 303.: ил.

7. Шабаров Ю.С. Органическая химия: Учебник для вузов в 2-х кн. - М.: Химия, 1996.

Стр. 558-561, 626-629.

Сайты

1. http://merlin.com.ua/chem/nitro/nitroin.html.

2. http://www.xumuk.ru/encyklopedia/a.html.

3. http://slovari.yandex.ru/dict/brokminor.

Страницы: 1, 2, 3



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.