на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Свойства титана и его соединений
p align="left">Для электролиза из фтористых соединений наиболее приемлемым является гексафтортитанат калия (K2TiF4). Он сравнительно легко получается, имеет хорошую электропроводность и низкое давление пара, стоек на воздухе. Электролиз может быть осуществлен в среде расплавленных солей под защитой инертного газа. При этом можно получить сравнительно чистый металл, содержащий 99,9% титана. Сложность аппаратурного оформления и высокая стоимость сырья являются существенными недостатками этого способа, препятствующими его развитию.

Использование карбидов и нитридов титана для получения чистого металла так же, как и смесей, содержащих металлический титан, связано с применением электрорафинирования. Это двухстадийный способ, отличающийся тем, что в качестве исходного сырья для первичной стадии процесса восстановления могут быть использованы титаносодержащие шлаки или даже концентраты руд. В качестве восстановителя используют уголь, алюминий, магний, кальций и другие элементы и соединения. В зависимости от вида восстановителя и условий протекания процесса получают металлический титан, низшие оксиды, карбид, нитрид, оксикарбид или оксикарбонитрид титана в смеси с другими соединениями и элементами.[7,c.11]

Магнийтермический способ получения титана. Для получения титана также применяется магний, при этом в качестве побочного продукта получается хлористый магний, являющийся сырьем для производства магния. Вместе с тем при производстве магния побочным продуктом является хлор, который необходим для получения четыреххлористого титана, поэтому производство магния и титана обычно совмещают на одном заводе.

Титан выпускают в виде губки или слитков, которые затем на других заводах перерабатывают на лист, профили, трубы, поковки и другие полуфабрикаты. Технологическая схема получения титана состоит из шести основных переделов.[7,c.29]

При промышленном получении титана руду или концентрат переводят в диоксид титана TiO2, который затем подвергают хлорированию. Однако даже при 800-1000?С хлорирование протекает медленно. С достаточной для практических целей скоростью оно протекает в присутствии углерода, связывающего кислород в основном в СО:

TiO2 + 2Cl2 + 2C = TiCl4 + 2CO

Получающийся хлорид титана(IV) восстанавливают магнием:

TiCl4 + 2Mg = Ti + 2MgCl2

а образующуюся смесь подвергают нагреванию в вакууме. При этом магний и его хлорид испаряются и осаждаются в конденсаторе. Остаток - губчатый титан - переплавляют, получая компактный ковкий металл.

Примеси кислорода, азота, углерода резко ухудшают механические свойства титана, а при большом содержании превращают его в хрупкий материал, непригодный для практического использования. Поскольку при высоких температурах титан реагирует с названными неметаллами, его восстановление проводят в герметичной аппаратуре в атмосфере аргона, а очистку и переплавку - в высоком вакууме.[1,c.648]

Для получения небольших количеств титана высокой чистоты применяют иодидный метод.

Иодидный метод относится к термическому разложению. Исходный металл в виде порошка нагревается до 100-200?С с небольшим количеством иода в герметическом аппарате. В аппарате натянуты титановые нити, нагреваемые электрическим током до 1300-1500?С. Титан (но не примеси) образует с иодом летучий иодид TiI4, который разлагается на раскаленных нитях. Выделяющийся чистый титан осаждается на них, а иод образует с исходным металлом новые порции иодида; процесс идет непрерывно до переноса всего металла на титановые нити:

4. Физические и химические свойства

Титан - металл, элемент IV группы периодической системы Д.И. Менделеева. Порядковый номер 22. Атомная масса 47,88. Изотопы: 48 (основной), 46, 47, 49, 50. Плотность 4,5 г/см3. Существует в двух полиморфных модификациях: Ь-Ti - при температурах ниже 882ўЄС, в-Ti - выше 882ўЄC. При переходе ЬЎжв изменение объема составляет +5,5%, тепловой коэффициент перехода 0,38 ккал/г-атом. Температура плавления титана 1665+5ўЄС. Температура кипения 3572ўЄС. Давление паров при 1200-2000 К:

Прочность на разрыв чистого (иодидного) титана составляет примерно 20 кГ/мм2, товарного титана 30-40 кГ/мм2, прочность конструкционных сплавов на основе титана равна обычно 100-120 кГ/мм2, в отдельных же случаях достигает 140 кГ/мм2 и выше.

Все элементы периодической системы по отношению к титану по их химическому воздействию можно разделить на четыре группы:

1. Элементы, не взаимодействующие с титаном: Li, Na, K, Rb, Cs, Fr, Mg. Ca, Sr, Ba, Ra и инертные газы.

2. Элементы, образующие с титаном химические соединения с ковалентной связью, не имеющие или имеющие малую растворимость в титане: H, F, Cl, Br, I, At, O, S, Se, Te, Po.

3. Элементы образующие с титаном соединения с металлическим характером связи (металлические соединения) и ограниченные твердые растворы: Cu, Ag, Zn, Cd, Hg, Be, Ga, In, Tl, B, Al, Th, C, Si, Ge, Sn, Pb, N, P, As, Sb, Bi, Mn, Te, Re, Fe, Co, Ni, Ru, Rh, Pd, Os, Ir.

4. Элементы, образующие с титаном в-модификации непрерывных твердых растворов: Zr, Hf, V, Nb, Ta, Cr, Mo, Sc, W.

Таким образом, титан так или иначе взаимодействует с с большинством элементов. Это, с одной стороны, создает значительные трудности при получении чистого титана и его сплавов, а , с другой стороны, дает возможность получать большое количество разнообразных по составу и свойствам сплавов.[7,c.5]

Титан - довольно активный металл; стандартный электродный потенциал системы Ti/Ti2+ равен -1,63 В. Однако благодаря образованию на поверхности металла плотной защитной пленки титан обладает исключительно высокой стойкостью против коррозии, превышающей стойкость нержавеющей стали. Он не окисляется на воздухе, в морской воде и не изменяется в ряде агрессивных химических сред, в частности в разбавленной и концентрированной азотной кислоте и даже царской водке.[1,c.649]

Титан при низкой температуре более устойчив к действию кислорода, чем железо, однако при нагревании на воздухе он сгорает до TiO2. С хлором титан реагирует примерно при 300?C.[2,c.635]

В отличие от циркония и гафния титан растворяется при нагревании в соляной кислоте, образуя в восстановительной атмосфере аквакомплексы Ti(III):

Растворы титана. В водных растворах Ti находится преимущественно в 4-валентном состоянии, но в определенных условиях существуют комплексы, в которых валентность титана равна трем. Малый ионный радиус позволяет ему приобретать заметную долю электронной плотности кислородного донора с образованием прочной ковалентной связи. Значения электроотрицательности для TiOH и TiO - 2,43 и 2,56 соответственно. Сродство ионов Ti+4 настолько велико, что комплексы практически всегда содержат кислород и образуют в растворах титана(IV) цепи с гидроксильными и кислородными мостиками.

Химия титана даже в разбавленных растворах оказывается связанной с процессами полимеризации.

В растворах титан может находиться в форме простых и комплексных ионов, а также в коллоидно-дисперсном состоянии. Превалирование той или иной формы зависит от условий получения и хранения раствора, его концентрации, содержания примесей и других факторов. Способность Ti вступать в типичные ионные реакции, например в окислительно-восстановительные, свидетельствует о том, что в растворах сернокислые соли диссоциирует на катионы и анионы. Так, превращение сульфата в хлорид при добавлении BaCl2:

Ti4++2SO42-+2Ba2++4Cl-=2BaSO4+Ti4++4Cl-

Происходит полно и ион Ti4+ не изменяется. Кристаллизация солей с четко выраженными стехиометрическими отношениями также является доказательством их ионной природы.

В водных сернокислых растворах существование ионов Ti4+ невозможно, так как Ti существует в виде гидратных комплексов Ti(H2O)64+, подвергающихся гидролизу с депротонизацией. С позиций представлений о льдоподобной структуре воды выполненные расчеты по данным кажущихся мольных объемов позволяют предполагать нахождение Ti(H2O)64+ как в каркасе структуры воды, так и в ее пустотах.

Прямых доказательств существования ионов титанила TiO2+ в растворе нет. Однако наличие TiO-группы в ряде соединений не вызывает сомнения. Термохимическим методом показано, что ион титанила обладает в растворе ярко выраженной положительной гидратацией. Гидратные числа, рассчитанные для Ti-форм при мольных соотношениях SO3 : Ti, равных 2 и 1, составляют 9и 5 соответственно, что близко к минимальным величинам для ионов U4+, Na+ и К+, найденным по данным числе переноса электролитов. С ростом концентрации титана гидратные числа уменьшаются и к моменту кристаллизации сульфатов становятся близкими к числу молекул Н2О на атом Ti, прочно связанных в твердой фазе.[6,c.66]

Гидролиз титансодержащих ионов или нейтральных молекул в сернокислых растворах - сложный физико-химический процесс. В нем различают несколько стадий: взаимодействие сульфатов титана с водой с их переходом в основные сульфаты, образование и рост мицелл гидроокиси, коагуляция мицелл с выпадением осадка. Процесс гидролиза сульфатов титана может быть представлен последовательными реакциями:

Титановая губка. При металлотермическом восстановлении четыреххлористого титана образуются отдельные кристаллы металла. Размер этих кристаллов колеблется от сотых долей микрона до 10мм и более. В процессе восстановления и при высокотемпературной выдержке отдельные кристаллы срастаются в губчатый блок, сохраняющий размеры и форму реакционного сосуда. Как и всякое пористое тело, титановая губка имеет большую удельную поверхность.

Попадая на воздух, эта поверхность контактирует с газами, входящими в состав воздуха. Титан является химически активным элементом и вступает во взаимодействие с окружающими его газами. Степень этого взаимодействия зависит от величины поверхности губки, характера взаимодействия титана с каждым из газов и температуры.

При дроблении, прессовании и других операциях губка нагревается до 250-300ўЄС. Это способствует ускорению химического взаимодействия титана с газами. Присутствие хлористых солей в губке делает ее контакт с воздухом более опасным, поскольку хлориды интенсивно поглощают воду. Эти свойства губки при определенных условиях проявляются настолько резко, что из высших сортов металла может быть получено изделие низкого качества или даже брак. Поэтому, явления связанные с загрязнением титановой губки в период ее пребывания на воздухе, требуют тщательного изучения и постоянного внимания.

Взаимодействие титановой губки с кислородом. Титан взаимодействует с кислородом при всех температурах. При избытке кислорода образуется TiO2, в иных условиях возможно образование TiO и Ti2O3. Образовавшийся при комнатной температуре адсорбционный слой состоит из химически связанного кислорода и надстройки слабо связанных с поверхностью атомов газов. В начальный период процесса на скорость роста окисной пленки основное влияние оказывает температура. Окисление поверхности титана происходит главным образом в течение 1-2 ч. Дальнейшая выдержка при температурах до 300ўЄС приводит к незначительному изменению состояния поверхности. Это связано с защитными свойствами окисной пленки.

Процесс окисления титана на воздухе в интервале 20-300ўЄС можно разделить на три периода:

1. Образование окисной пленки при температуре до 50ўЄС; при этом увеличения содержания кислорода методом вакуум-плавления не обнаруживается.

2. Окисление титана в диапазоне температур от 60 до 140ўЄС; в этом интервале температур увеличение содержания кислорода подчиняется линейному уравнению

3. Окисление титана в диапазоне температур от 140 до 300ўЄС; в этом интервале температур увеличение содержания кислорода в титане выражается параболической зависимостью

При температурах выше 400ўЄС структура пленки нарушается, и скорость окисления титана резко возрастает. Это связано с увеличением скорости диффузии ионов кислорода с поверхности в глубь металла. Окисление титана на воздухе протекает более интенсивно, чем в чистом кислороде. Это связано с присутствием азота, который способствует образованию дефектов в решетке окисла и повышает скорость окисления.

Взаимодействие титана с азотом. В результате взаимодействия титана с азотом образуется нитрид титана (TiN). Цвет нитрида титана изменяется от светло-коричневого до бронзово-желтого.

На воздухе до 300ўЄС титан незначительно взаимодействует с азотом. Этот факт подтверждает, что на воздухе прежде всего образуется окисная пленка, которая в значительной степени защищает титан от взаимодействия с азотом. При повышении температуры до 400ўЄС начинается некоторое растворение окисной пленки в глубь металла, происходит нарушение структуры поверхностной пленки, в результате чего взаимодействие титана с азотом воздуха интенсифицируется.

В среде азота взаимодействие титана с азотом при 20ўЄС обнаруживается только по изменению цвета поверхности металла.

Азот способен растворяться в титане; до 550ўЄС диффузия ионов азота в глубь металла протекает медленно, но резко активизируется при 700ўЄС. Даже незначительное содержание азота в титане приводит к заметному увеличению его твердости. Азотирование является эффективным средством повышения износоустойчивости титана.

Взаимодействие титана с водой. При химическом взаимодействии титана с водой по схеме

Протекают одновременно два процесс: поглощение титаном водорода и образование окисных соединений.

Страницы: 1, 2, 3



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.