на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Усовершенствование адресной доставки БАВ к отдельным органам и клеткам-мишеням

Усовершенствование адресной доставки БАВ к отдельным органам и клеткам-мишеням

Содержание

Введение

1. Общая характеристика процесса (сущность, область применения, основные виды продуктов)

1.1 Механизм реакции

1.2 Основные реагенты и их подготовка

2. Методы проведения процесса

2.1 Параметры управления процессом

2.2 Принцип оптимизации технологии

3. Современные методы совершенствования технологии

4. Экологические проблемы, особенности техники безопасности и охраны окружающей среды

5. Основные подходы химико-технологической реализации процесса

Заключение

Литература

Введение

Разработка рецептурных форм для лекарственных средств, в которых качества активных ингредиентов сохраняются длительное время - важная задача, так как многие БАВ не рассчитаны на длительное пребывание в организме - они быстро выводятся или метаболизируют. Также их полезные свойства утрачиваются под воздействием кислорода, УФ - облучения и перепадов температуры. Кроме того, некоторые весьма важные компоненты могут нейтрализовать оздоровительное действие других компонентов, а в некоторых случаях образовывать с ними принципиально вредные для организма продукты. В связи с этим БАВ используются с недостаточной эффективностью, что приводит к снижению лечебного свойства конечного лекарственного средства. Именно поэтому, все больше ученым приходится задумываться не только над поиском новых биорегуляторов, но и над созданием более совершенных форм уже известных биологически активных препаратов и задачей доставки этих препаратов в организм, регулирования скорости их действия и времени пребывания в организме. Природные полимеры, с этой точки зрения, представляют уникальную возможность для создания новых средств доставки БАВ. Широкое применение природных полимеров обусловлено их биосовместимостью, способностью к биодеградации, низкой токсичностью. В настоящее время к перспективным формам доставки различных биорегуляторов (ферментов, гормонов, витаминов, активаторов и ингибиторов различной природы) к тканям и органам относят липосомы, векторы, наночастицы, такие как полиэлектролитные микрокапсулы.

Включение белков в полимерные сферы и капсулы представляет большой научный и практический интерес. Внимания заслуживают публикации по капсулированию белков в полиэлектролитные (ПЭ) частицы. С помощью технологии электролитического восстановления, ступенчатое нанесение противоположно заряженных полиэлектролитов на матрицу, в качестве которой могут выступать твердые частицы различного размера, позволяет проводить иммобилизацию в мягких условиях и в водных растворах.

На основе полиэлектролитных комплексов (ПК) могут быть созданы эффективные системы с иммобилизованным ферментом, обладающим свойством саморегулирования. Ранее было предложено использовать ПК в качестве депо антигепариновых веществ. Антигепариновые вещества, представляющие собой растворимые катионные полиэлектролиты, являются чрезвычайно токсичными. Их токсичность не проявляется на фоне гепарина благодаря образованию ПК гепарин-поликатион. Поэтому передозировка антигепариновых препаратов представляет значительную опасность. Использование этих веществ в составе ПК позволяет избежать данного побочного эффекта. В качестве матриц для ПК используются коллоидные частицы с диаметром от десятков нанометров до десятков микрон. Круг использованных коллоидных частиц разнообразен. Среди них латексные полистирольные и меламинформальдегидные частицы, неорганические карбонатные матрицы, кристаллы органических красителей, микрочастицы из полигидроксикарбоновых кислот, интактные клетки, белковые агрегаты, микроагрегаты ДНК. В данной работе были использованы CaCO3 ядра, которые, на наш взгляд, являются оптимальными при работе с БАВ, т.к. растворяющим агентом для них служит ЭДТА и процесс растворения происходит в мягких условиях при физиологических значениях рН.

Для формирования полиэлектролитной оболочки на коллоидных частицах методом электролитического восстановления используются как синтетические, так и природные полиэлектролиты. В качестве последних применялись хитозан и хитозансульфат, протамин и декстран сульфат и другие. Основным фактором, определяющим эффективность микрокапсул, является проницаемость их оболочек для пищеварительных соков и других биологических жидкостей, а также для содержащихся в них лекарственных веществ.

1. Общая характеристика процесса (сущность, область применения, основные виды продуктов)

Русский академик В.В. Петров в 1802 году (за 30 лет до открытия М.Фарадеем законов электролиза) с помощью созданной им высоковольтной гальванической батареи обнаружил, что выделение электролизных газов у электродов сопровождается подкислением воды у анода и подщелачиванием у катода. Разделив пространство между анодом и катодом пористой диафрагмой, В.В. Петров впервые получил воду, обогащенную продуктами преимущественно катодных или преимущественно анодных электрохимических реакций - католит и анолит, соответственно.

В 1807 - 1808 гг. английским исследователем Г. Дэви с помощью электролиза были получены неизвестные ранее металлы - натрий и калий, а позднее электролиз был использован для получения магния и алюминия.

В 1837 году член Российской академии наук академик Б.С. Якоби опубликовал сообщение о разработанном им методе гальванопластики - получении металлических копий с рельефных изделий методом электролиза. Это открытие стало основой промышленного рафинирования меди.

Первые электрохимические заводы для рафинирования меди были построены в 70-х годах XIX века, после изобретения динамомашины. В 1886 - 1888 гг. возникли заводы для электролитического получения алюминия и хлорноватистокислых солей. В 1890 г. введены в эксплуатацию заводы для электролитического получения хлора, щелочи и металлического натрия, а затем для получения водорода и кислорода электролизом воды, для получения электролитического никеля, меди, цинка. В настоящее время электролиз водных растворов солей, электролиз расплавов, производство аккумуляторов и гальванических батарей представляют одну из крупнейших отраслей промышленности - электрохимическую. Задачи электрохимической промышленности разнообразны. Наиболее важными из них являются:

рафинирование цветных и благородных металлов;

получение цветных металлов из руд;

получение щелочных, щелочноземельных и других легких металлов;

получение водорода, кислорода, хлора и щелочей;

электролитический синтез неорганических и органических веществ;

декоративные и антикоррозионные покрытия металлов;

изготовление электрических аккумуляторов, гальванических элементов и других химических источников электроэнергии;

электрохимическая размерная обработка металлов и сплавов.

Практически весь хлор (мировое производство около 50 млн. тонн в год), почти весь гидроксид натрия, такие металлы как магний и алюминий, производятся электрохимическим путем. Электрохимические процессы играют важную роль в металлургии меди, цинка, кадмия, никеля, олова, натрия, бериллия, циркония, индия и в получении ряда благородных металлов, в том числе золота. Большинство важнейших современных электрохимических производств представлено размещенными на большом пространстве в тысячи квадратных метров многотонными электролизерами или гальваническими ваннами, связанными в единый производственный комплекс сетью трубопроводов и электрических линий. Работа этого комплекса обеспечивается целым рядом вспомогательных производств - для очистки воды и приготовления исходных растворов, кондиционирования продуктов электролиза, регенерации и нейтрализации отходов и др. Что препятствовало открытию электрохимической активации? Практически все растворы электролитов, применяемых в процессах прикладной электрохимии, имеют высокую концентрацию и низкое удельное электрическое сопротивление, что связано с требованиями минимизации расхода электроэнергии на единицу получаемого продукта. В связи с тем, что пресная вода или слабоминерализованные исходные растворы не находили практического применения в прикладной электрохимии в качестве растворов электролитов, то за более чем вековую историю ее развития сформировалось представление о том, что электролиз пресной воды невозможен в связи с малым количеством содержащихся в ней ионов. Это представление было основано на традиционно сложившихся подходах к промышленным электрохимическим процессам, для которых диапазон используемых напряжений на электродах единичной ячейки обычно не превышал 6 вольт при силе тока в несколько сотен ампер.

На самом деле электролиз пресной, ультрапресной и даже дистиллированной воды возможен, только для этого требуется высокое напряжение между электродами, а сам процесс электролитического разложения воды протекает при низкой плотности тока, т.е. с очень большими непроизводительными (с позиций промышленного электролиза) затратами электроэнергии. В 1972 году инженер В.М. Бахир впервые обратил внимание на ранее неизвестный факт: анолит и католит, полученные в диафрагменном электрохимическом реакторе из слабоминерализованной воды, очень сильно отличаются по физико-химическим параметрам и реакционной способности от моделей католита и анолита, приготовленных путем растворения в воде химических реагентов, вид и количество которых определены в соответствии с законами классического электролиза. Дальнейшие исследования показали, что различия в свойствах только что полученных католита и анолита разбавленных водно-солевых растворов от их химических моделей-аналогов (растворов стабильных щелочей или кислот) не являются постоянными, стабильными во времени. По прошествии некоторого времени (время релаксации) свойства и реакционная способность анолита и католита, самопроизвольно изменяясь, становятся равными соответствующим параметрам их химических моделей, т.е. в конечном итоге законы электролиза строго выполняются, но не сразу, а лишь по прошествии достаточно длительного времени - в общем случае от десятков минут до десятков и даже сотен часов. Обнаруженные значительные различия в реакционной способности и физико-химических параметрах дали В.М. Бахиру основание назвать анолит и католит в период времени их релаксации активированными или, иначе, электрохимически активированными растворами (водой) и сформулировать основные принципы технологии электрохимической активации. Электрохимическая активация как физико-химический процесс - это совокупность осуществляемых в условиях минимального выделения тепла электрохимического и электрофизического воздействий на воду с содержащимися в ней ионами и молекулами растворенных веществ в области пространственного заряда у поверхности электрода (либо анода, либо катода) электрохимической системы при неравновесном переносе заряда через границу “электрод-электролит” электронами. В результате электрохимической активации вода переходит в метастабильное (активированное) состояние, которое характеризуется аномальными значениями физико-химических параметров, в том числе окислительно-восстановительного потенциала, связанного с активностью электронов в воде, электропроводности, рН и других параметров и свойств. Самопроизвольно изменяясь во времени, возмущенные предшествующим внешним воздействием параметры и свойства воды, постепенно достигают равновесных значений в результате релаксации. Процесс получения электрохимически активированных воды и растворов относится к крайне неравновесным и является объектом изучения интенсивно развивающейся новой области химии - синергетики в химических процессах и химической технологии. Если в традиционной прикладной электрохимии основной задачей является отыскание параметров оптимального приближения электрохимического процесса к равновесным условиям, то для электрохимической активации важным является определение параметров оптимального удаления от условий равновесного протекания электрохимических реакций. Электрохимическая активация как технология - это получение и последующее использование электрохимически активированной воды либо в процессах ее очистки от нежелательных компонентов, либо в различных технологических процессах в качестве реагента или реакционной среды с целью управления сложными физико-химическими реакциями, экономии энергии, времени и материалов, повышения качества конечного продукта, уменьшения образования отходов.

Следует пояснить, что термин “вода” в приложении к процессам электрохимической активации, обозначает разбавленный водный раствор электролитов простого или сложного состава с общей концентрацией от нескольких миллиграммов до нескольких граммов в одном литре. В общем случае, это и дистиллированная, и ультрапресная, и пресная, в том числе питьевая, и слабоминерализованная (техническая) вода, т.е. водные растворы электролитов, удельная электропроводность которых значительно изменяется при относительно небольшом изменении концентрации. Эффекты электрохимической активации ярко проявляются для водных растворов, концентрация электролитов в которых меньше 0,1 моль/л и существенно ослабевают в растворах, концентрация электролитов в которых больше 0,1 моль/л. Необходимо отметить, что, как правило, продукты реакций, полученные с применением активированных растворов, не изменяют своих свойств и состояния во времени, т.е. не подвержены процессам релаксации. Например, если при взаимодействии воды с высоким содержанием ионов железа с активированным католитом в нерастворимые соединения переводится в три раза больше ионов железа, чем при взаимодействии той же воды с химической моделью католита, то результаты реакции необратимы в обоих случаях. Технические системы для электрохимической активации. В общем случае, при пропускании постоянного электрического тока через воду на электродах всегда происходят химические реакции и химический состав воды у анода и катода изменяется. Задача электрохимической активации состоит в том, чтобы подвергнуть всю жидкость воздействию электрического поля возможно более высокой напряженности при максимально возможном химическом воздействии и минимальном тепловыделении. Задача весьма непростая, поскольку в любых электрохимических системах, представленных двумя электродами, погруженными в жидкость, наибольшая интенсивность электрофизического воздействия может быть обеспечена только в непосредственной близости к поверхности электрода, т.е. в области двойного электрического слоя (ДЭС). В связи с этим, для осуществления процессов электрохимической активации необходимы специальные электрохимические реакторы, поскольку традиционные электролизеры, как лабораторные, так и промышленные, сконструированные для оптимальной реализации традиционных технологических процессов прикладной электрохимии, не пригодны для работы на пресной воде или разбавленных водных растворах. Процесс собственно активирования воды происходит только в непосредственной близости к поверхности электрода, где напряженность электрического поля в двойном электрическом слое (ДЭС) достигает сотен тысяч вольт на сантиметр. ДЭС имеет очень малую толщину: в разбавленных растворах и пресной воде - порядка 0,1 микрона, в концентрированных - намного меньше. Чтобы яснее представить себе, насколько сложно обеспечить соприкосновение всех микрообъемов воды, окружающей электрод, с его поверхностью, допустим, что в стакан погружен электрод в виде металлического прутка диаметром с карандаш. Если допустить также, что область высокой напряженности электрического поля вокруг электрода (область ДЭС) вдруг увеличилась и достигла 1 мм, то, для сохранения пропорций системы, диаметр стакана должен возрасти от 7 сантиметров до 700 метров. Понятно, что обеспечить обработку всей воды этого “озера” у поверхности электрода невозможно, не прибегая к специальным приемам.

Страницы: 1, 2, 3, 4



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.