на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Витамин С: структура, химические свойства, значение
p align="left">Среди высших организмов лишь очень немногие не способны к биосинтезу витамина С. К ним относится и Homo sapiens, поэтому неудивительно, что большая часть из того, что известно о биохимии L-аскорбиновой кислоты, имеет отношение к млекопитающим.

3.1 Биосинтез

Большинство живых организмов могут превращать D-глюкозу в L-аскорбиновую кислоту. Важно ясно понимать, что это превращение происходит не через эпимеризацию, а через формальный поворот в плоскости на 180° соединения D-ряда, в результате чего образуется соединение, относящееся к L-ряду. Следует помнить, что представленное на рис. 5.2 изображение ациклической формы D-глюкозы, относится к D-ряду, так как гидроксильная группа у предпоследнего атома углерода (в данном случае С-5) расположена справа от него.

Защитив предварительно реакционноспособную альдегидную группу по С-1, можно окислить D-глюкозу поположениюС-6, получив D-глюкуроновую кислоту (рис. 5.3).

Если теперь С-1 альдегидную группу восстановить до первичного гидроксила, мы получим соединение, структура которого приведена на рис. 5.4.

Наиболее важная функциональная группировка (в данном случае карбоксильная при С-6) обычно располагается в верхней части изображения, а соответствующему атому углерода присваивается номер С-1. Следовательно, если повернуть лист бумаги на 180° или перевернуть изображение в плоскости, мы пополучим соединение L-ряда -- производное альдогексозы L-гулозы, называемое L-гулоновой кислотой (рис. 5.5). Последующие циклизация и окисление приводят к образованию L-аскорбиновой кислоты.

Считается, что все хлорофиллсодержащие растения и прорастающие семена могут синтезировать аскорбиновую кислоту согласно схеме, приведенной на рис. 5.8.

Согласно некоторым источникам, у растений более важна цепь превращений с участием D-галактуроновой кислоты, в результате которой после восстановления и замыкания лактонного кольца вместо L-гулонолактона образуется L-галактуронолактон, также превращающийся в L-аскорбиновую кислоту. Предшественником D-галактуроновой кислоты является, очевидно, D-галактоза -- углевод, обнаруженный у млекопитающих и не найденный по крайней мере в значительных количествах у растений. Поэтому трудно предполагать, что этот процесс может быть важным. Тем не менее независимо от того, является ли исходным соединением D-глюкоза или D-галактоза, биосинтез L-аскорбиновой кислоты происходит через инверсию. Однако этому противоречат экспериментальные данные, свидетельствующие о том, что у некоторых растений, например у созревающей клубники, превращение D-глюкозы в L-аскорбиновую кислоту осуществляется не через инверсию. Если использовать D-глюкозу, меченную тритием (3Н) по положению С-6, в образующейся L-аскорбиновой кислоте меченым оказывается также положение С-6. Результаты генноинженерной работы, в которой была получена экспрессия гена фермента редуктазы Corynebacterium в бактериях Erwinia herbicola, демонстрируют наличие в цепи превращений еще двух промежуточных соединений -- D-глюконовой и 2,5-дикетоглюконовой кислот. В этом случае нет необходимости в инверсии, чтобы объяснить, каким образом D-глюкоза трансформируется в L-аскорбиновую кислоту. Очевидно, следует предположить, что одни растения продуцируют L-гулоновую кислоту через D-глюкуроновую или D-гaлактуроновую кислоты, тогда как у других процесс протекает через образование d-глюконовой и 2,5-дикетоглюконовой кислот и не требует инверсии.

Большая часть исследований по синтезу аскорбиновой кислоты у животных была выполнена на лабораторных крысах, и результаты подтвердили идею о полной С-1/С-6 инверсии между D-глюкуронатом и L-гулонатом. Большинство представителей земной фауны способны биосинтезировать L-аскорбиновую кислоту из d-глюкозы через промежуточные соединения -- D-глюкуроновую кислоту, L-гулоновую кислоту, L-гулонолактон и 2-кето-L-гулонолактон. Исключение составляют приматы (включая и Homo sapiens) и некоторые другие млекопитающие, а также рыбы, насекомые и некоторые виды птиц. Остается лишь гадать, почему эти представители животного мира утратили способность к биосинтезу аскорбиновой кислоты. По-видимому, их далекие предки лишились генетического материала, необходимого для синтеза фермента L-гулонолактоноксидазы, что и заблокировало завершающую стадию в цепи превращений. Полагают, что эта досадная ошибка произошла 25 миллионов лет назад и именно она привела к тому, что человек делит несомненные трудности своего положения с другими приматами, морскими свинками, индийскими крыланами, некоторыми видами птиц, включая дрозда с экзотическим голосом; рыбами и некоторыми видами насекомых, включая обитающую в пустыне саранчу, тутового шелкопряда и жуков Anthonomus. Возможно, что у всех травоядных насекомых (поедающих зеленые растения) существует потребность в поступлении витамина С с пищей. Выведение его из рациона, например, саранчи приводит к абортивной линьке и смерти. У тех представителей животного мира, которые способны самообеспечивать себя аскорбиновой кислотой, ее биосинтез осуществляется в печени (млекопитающие) или почках (птицы, рептилии, амфибии).

3.2 Витамин С в продуктах питания

Homo sapiens целиком зависит от поступления витамина С с пищей. Единственным животным продуктом, содержащим значительные количества витамина С, является молоко (1-5 мг/100г); содержится он также и в печени. Самые богатые источники аскорбиновой кислоты -- это свежие овощи и фрукты (особенно цитрусовые, томаты и зеленый перец), печеный картофель (17 мг/100 г) и листовые овощи. Очень богаты витамином С гуава (300 мг/100 г) и черная смородина (200 мг/100 г), но они не слишком распространены в западных странах. В табл. 5.1 приведены исчерпывающие данные о содержании витамина С в наиболее употребляемых овощах и фруктах.

Известно, что кулинарная обработка овощей и фруктов часто влечет за собой потери аскорбиновой кислоты. Так, при измельчении продуктов значительно возрастает ферментативная активность аскорбатоксидазы, содержащейся в растениях, богатых витамином С. Этот фермент присутствует во всех растительных тканях и обычно либо неактивен, либо содержится внутри визикул. Другой фермент, обусловливающий потерю аскорбиновой кислоты, фенолаза, катализирует окисление полифенольных соединений кислородом воздуха, за счет чего происходит потемнение таких фруктов, как яблоки. При наличии аскорбиновой кислоты фермент восстанавливает о-хиноны снова до о-дифенолов. Процесс сопровождается образованием дегидроаскорбиновой кислоты, которая быстро превращается в 2,3-дикетогулоновую кислоту, и

катализируется ионами Cu(II) и других переходных металлов. Именно поэтому не рекомендуется готовить овощи и фрукты в медной и железной посуде. И, конечно, основным фактором, влияющим на потерю витамина С в процессе приготовления пищи, является просто его растворение в воде. Исследования скорости разрушения витамина С при кулинарной обработке, выполнены на модельных системах, привели к предположению, что это процесс первого порядка. Влияние температуры на скорость распада витамина С адекватно описывается уравнением Аррениуса, где к -- константа скорости первого порядка, А -- предэкспоненциальный множитель, Еа -- энергия активации, R -- газовая постоянная и Т -- абсолютная температура:

Как показали результаты экспериментов, график зависимости lnk от 1/Т представляет собой прямую линию, что позволяет вычислить энергию активации. Стандартные величины лежат в пределах 80-120 кДж · моль -1. Однако растения -- очень сложные системы, на скорость распада витамина С в которых влияют и другие факторы, например микроорганизмы и (или) природные ферменты. Поэтому энергия активации служит только для приблизительной оценки влияния температуры на этот процесс. Более того, дополнительным параметром является отсутствие воздушной среды. Ситуация еще больше усложняется, если реакция не подчиняется первому порядку. Так, например, имеются данные, что при хранении соков распад аскорбиновой кислоты является процессом нулевого порядка. Трудно понять, почему наблюдается такое различие в кинетике, однако несомненно, что решающее влияние на разрушение витамина С оказывает природа системы. Следует отметить, что овощи, приготовленные в микроволновой печи, сохраняют гораздо больше витамина С, чем приготовленные обычными способами. Это может происходить главным образом благодаря использованию меньших объемов воды, хотя должно сказываться и сокращение времени кулинарной обработки. Таким образом, потери витамина С можно предотвратить, не только избегая длительного кипячения овощей в медной посуде, но и если готовить их целиком.

4 Аналитические аспекты химии витамина С

4.1 Аналитическая химия

Анализ L-аскорбиновой кислоты и ее различных форм представляет собой определенную трудность, и даже сегодня нет универсального рутинного метода, который был бы свободен от недостатков. Любой метод анализа должен давать возможность одновременно определять как саму L-аскорбиновую кислоту, так и продукты ее окисления и находить четкие различия между этими соединениями. Кроме того, аналитический метод должен позволять работать с минимальными количествами препаратов. Это, так сказать, требования высшего порядка. Но ситуация осложняется тем, что в животных и растительных тканях витамин С присутствует в окружении множества других органических молекул.

Аскорбиновую кислоту следует либо отделять от них, либо использовать для анализа некое уникальное свойство этой кислоты. Очевидно, что таким уникальным свойством является ее способность участвовать в окислительно-восстановительных реакциях, что и составляет основу многих аналитических методик. Другие методы базируются на определении суммарного количества витамина С как в окисленной, так и в восстановленной формах. Иногда такое определение более предпочтительно, поскольку многие полезные свойства этого соединения, используемые в медицине, присущи как самой аскорбиновой кислоте, так и продуктам ее окисления.

4.2 Биологические методы анализа

Сегодня биологические методы представляют главным образом исторический интерес. Но на самом деле их преимущество заключается в том, что они основаны на определении конкретного профилактического и лечебного свойства, а именно антискорбутной активности, присущей и дегидроаскорбиновой кислоте. Биологические методы требуют больших затрат времени и средств и дают широкий разброс результатов, которые не всегда надежны. Для проведения биоанализа используют морских свинок, так как крысы синтезируют собственный витамин С. Животных выдерживают на искусственном рационе с добавлением различных количеств витамина, затем забивают, а их зубы подвергают гистологическому анализу. В результате устанавливают степень защиты от цинги в зависимости от количеств аскорбиновой кислоты, поступающей с пищей. Антискорбутная активность 0,05 мг аскорбиновой кислоты принята в качестве международной единицы для измерения содержания витамина С.

4.3 Титриметрические и колориметрические методы анализа

Титриметрические методы основаны на использовании восстановительных свойств L-аскорбиновой кислоты. Обычно она окисляется до дегидроаскорбиновой кислоты. В методике, предложенной еще в 1927 г., используется 2,6-дихлорфенолиндофенол или 2,6-ди-хлор-4[(4-гидроксифенил)имино]циклогексадиен-3,5-он-1, который при нейтральных рН дает синюю окраску, при кислых -- розовую, а при взаимодействии с L-аскорбиновой кислотой образует бесцветный продукт. Структура этого соединения приведена на рис. 7.1.

Эта реакция лежит в основе наиболее популярного титриметрического метода анализа витамина С. Она проста в исполнении благодаря легкости определения конечной точки титрования и без труда может быть использована для анализа растворов, содержащих довольно высокие концентрации витамина С. К сожалению, данный метод очень чувствителен к присутствию других восстановителей, с которыми витамин С часто соседствует в растворах (диоксид серы, таннины, ионы металлов, восстанавливающие сахара и т. п.). В каждом конкретном случае есть способы уменьшить влияние примеси, но устранить эффект всех примесных восстановителей в анализируемом растворе одновременно невозможно. И если раствор первоначально окрашен, это маскирует изменение цвета вследствие реакции; в таких случаях для определения конечной точки использовали разнообразные инструментальные методы, например, полярографию. Было предложено много других титрующих реагентов, например, соединения железа(Ш). В этом случае конечную точку определяют при добавлении в качестве индикаторов феррозина, а, а'- дипиридина или 2,4,6-трипиридил-симм-триазина (рис. 7.2).

Полагают, что единственным продуктом многих изученных окислительно-восстановительных реакций L-аскорбиновой кислоты является дегидроаскорбиновая кислота. Но часто это не так, и окисление идет дальше. Поэтому разработка точного и чувствительного метода определения концентрации в растворе L-аскорбиновой кислоты, дегидроаскорбиновой кислоты и отдельных или всех продуктов дальнейшего окисления все еще остается актуальной.

Практическое применение метода

Количественное определение аскорбиновой кислоты в мандарине

Выполнение работы:

На аналитических весах берут навеску 5-10г и растирают в ступке с 15см3 HCl. Полученный экстракт затем отфильтровывают в колбу объемом 50 см3, затем ступку и пестик моют дистилированой водой и также фильтруют в эту колбу. В 2 конические колбы на 50 см3 отбирают аликвоту фильтрата по 5см3,

Добавляют по 10 см3 дистилированой воды и титруют раствором 2,6- ДХФИФ до слаборозовой окраски. Титрование проводят не меньше 4 раз и определяют средний V 2,6-ДХФИФ.

m= 7,38г

V(ДХФИФ)=1,2 см3

С(ДХФИФ)= 0,001М

V(2,6-ДХФИФ) С(2,6-ДХФИФ) М(С6Н8О6) fэкв (С6Н8О6) Vк 100

m Va

4.4 Спектрофотометрический анализ

Водные растворы L-аскорбиновой кислоты бесцветны и не поглощают в видимой области спектра, но при нейтральных значениях рН в спектре оглощения наблюдается сильный сигнал при 265 нм. Это обстоятельство было бы очень удобно использовать для непосредственного спектрофотометрического анализа, но в большинстве случаев растворы витамина С содержат вещества, также поглощающие в УФ-области, что в некоторой степени ограничивает использование этого метода. В течение ряда лет были сомнения относительно точного значения молярного коэффициента экстинкции при 265 нм; в разных работах давались значения от 7500 до 16650. Причина таких различий объясняется быстрым окислением L-аскорбиновой кислоты в нейтральных и слабокислых растворах атмосферным кислородом. До тех пор, пока спектры поглощения снимаются в строго анаэробных условиях, неизбежны низкие величины, так как поглощение продуктов окисления, при 265 нм незначительно.

Сложности появляются при наличии в растворе ионов Си + и других переходных металлов, являющихся потенциальными катализаторами окисления молекулярным кислородом. Их следует удалять или связывать в комплекс путем добавления хелатирующего агента этилендиаминтетрауксусной кислоты. Положение максимума поглощения зависит от рН и в кислых растворах смещается в область 245 нм. На основании величины поглощения при этой длине волны в растворе соляной кислоты и хлорида калия определяли содержание витамина С в безалкогольных напитках и некоторых лекарственных препаратах, где незначительны примеси других веществ. Часто бывает желательно определить в одном и том же растворе содержание дегидроаскорбиновой и L-аскорбиновой кислот. Дегидроаскорбиновая кислота поглощает в УФ-области при 220 нм, но величина молярного коэффициента экстинкции значительно ниже и составляет 720. Таким образом, в этом случае чувствительность спектрофотометрического анализа почти в 20 раз меньше, чем в случае L-аскорбиновой кислоты. Позже мы увидим, что этот факт имеет далеко идущие последствия при хроматографическом разделении L-аскорбиновой и дегидроаскорбиновой кислот.

Для того чтобы преодолеть проблемы, связанные с присутствием в животных и растительных тканях веществ, поглощающих в УФ-области, проводился поиск реагентов, дающих специфические цветные реакции с L-аскорбиновой кислотой и(или) продуктами ее окисления. Титриметрический метод с использованием дихлорфенолиндофенола, описанный выше, был адаптирован для колориметрии. Для спектрофотометрического определения можно использовать и окрашенное 2,4-динитрофенилгидразиновое производное витамина. Обнаружено, что это же самое соединение образуется с дегидроаскорбиновой и 2,3-дикетогулоновой кислотами, являющимися продуктами окисления L-аскорбиновой кислоты (рис. 7.3). Эта реакция имеет широкое практическое применение для определения содержания дегидроаскорбиновой кислоты и известна под названием метода Роу. Он заключается во взаимодействии раствора дегидроаскорбиновой кислоты с 2,4-динитрофенилгидразином в специфических условиях при 37°С в течение 4 ч, в результате чего образуется озазон -- производное 2,3-дикетогулоновой кислоты. Эту же реакцию можно использовать и для определения содержания L-аскорбиновой кислоты, предварительно окислив ее до дегидроаскорбиновой кислоты над активированным углем (норит) раствором брома и т. п. При добавлении к озазону сильной кислоты образуется раствор красного цвета, поглощающий при 530 нм.

Основу для колориметрического и спектрофотометрического методов анализа создает также ярко-синий цвет продукта реакции L-аскорбиновой кислоты с соединениями диазония (рис. 7.4).

Альтернативный подход заключается в использовании флуоресценции продукта конденсации дегидроаскорбиновой кислоты с о-фенилендиамином. Облучение образующегося хиноксалина на длине волны 350 нм приводит к его флуоресценции при 427 нм. Обычно методика включает окисление L-аскорбиновой кислоты до дегидроаскорбиновой, и затем суммарное количество определяется спектрофлуорометрически.

4.5 Электрохимические методы

Электрохимические методы предоставляют возможность высокоселективного анализа с высокой точностью и воспроизводимостью; к тому же они очень просты в исполнении. Было предложено множество методик. Например, в таблетках поливитаминов, содержащих соединения Fe'-11-', витамин С был проанализирован методом дифференциальной пульсирующей вольтамперометрии на стеклянном углеродном электроде. Однако эти методики не нашли широкого применения, так как необходима большая работа по их совершенствованию.

4.6 Хроматографические методы

Хроматографические методы дают самую большую надежду на преодоление основной проблемы, связанной с присутствием в смесях, содержащих витамин С, множества мешающих анализу веществ. Как мы уже видели, пока не существует методов, позволяющих четко и непосредственно определять небольшие количества L-аскорбиновой кислоты и(или) продуктов ее окисления в присутствии любых других соединений. Единственный удовлетворительный способ достижения специфичности заключается в хроматографическом отделении анализируемых соединений друг от друга, а также от остальных веществ.

Вплоть до относительно недавнего времени наиболее часто из хроматографических методов использовали обычно газожидкостную хроматографию (ГЖХ). Определить L-аскорбиновую кислоту непосредственно этим методом невозможно из-за ее нелетучести. Для того чтобы иметь такую возможность, была разработана длительная процедура превращения L-аскорбиновой кислоты в летучий триметилсилиловый эфир. Такой метод позволяет получать точные и воспроизводимые результаты, но из-за длительности предварительной подготовки образца он не так удобен, как разработанный недавно метод высокоэффективной жидкостной хроматографии (ВЭЖХ). В настоящее время ВЭЖХ стала альтернативным способом быстрого определения самых разнообразных органических и неорганических соединений. Она часто находит применение в фармацевтической промышленности для анализа болеутоляющих и других препаратов. ВЭЖХ давно используется и для анализа витаминов.

Однако это не решает всех проблем в случае определения витамина С. Остается еще много сложностей, и метод не всегда удается использовать с одинаковой легкостью как для анализа всего разнообразия образцов, так и для определения малых концентраций.

Однако, когда применение метода ВЭЖХ возможно, он обычно дает надежные, точные и воспроизводимые результаты. Вопрос количественного определения разделенных веществ в ВЭЖХ требует наличия специфического физического свойства у витамина С (как у L-аскорбиновой кислоты, так и у продуктов ее окисления). Ко времени написания этой книги наиболее широкое распространение получили детекторы, измерявшие поглощение в УФ- или видимой области спектра. Они позволяют определять нанограммовые количества L-аскорбиновой кислоты, но при определении дегидроаскорбиновой кислоты их чувствительность гораздо ниже из-за значительно более низкого молярного коэффициента экстинкции (см. выше). Остается проверить, нельзя ли повысить эффективность анализа, используя детекторы другого типа, чувствительные к массе. Для ВЭЖХ обычно используют колонку с мелкопористым полимерным обратнофазовым сорбентом с развитой поверхностью, таким, как, например, PLRS-s 100A, при низких значениях рН водной подвижной фазы. Для этого подходит 0,2 М раствор NaH2PO4, который создает рН около 2,1, а также подавляет действие ионов металлов и дает хорошо забуференную подвижную фазу. Такой метод был использован для определения содержания L-аскорбиновой кислоты и продуктов ее окисления во фруктовых соках. В данной среде УФ-спектрофотометрический детектор, регистрирующий поглощение при 220 нм (при этой длине волны оба соединения имеют близкие молярные коэффициенты экстинкции), имеет удовлетворительную чувствительность. Типичная хроматограмма приведена на рис. 7.6.

Из нее явствует, что этим методом разделяются не только L-аскорбиновая и дегидроаскорбиновая кислоты, но и продукты их дальнейшего окисления, соответствующие которым пики также присутствуют на хроматограмме. Это одна из многих методик с использованием ВЭЖХ, пригодных для проведения подобного анализа.

4.7 Неорганическая химия

Этот раздел будет посвящен главным образом реакциям L-аскорбиновой кислоты с ионами металлов и их комплексами. Однако было бы неуместно обсуждать эту тему без рассмотрения свойств соединения, которое в буквальном смысле „покушается" на всю неорганическую химию. Следовательно, сюда важно включить рассмотрение довольно сложного химизма окислительно- восстановительных реакций витамина С, а также информацию о количественном и качественном определении и свойствах соединений, которые часто фигурируют как промежуточные продукты таких реакций, а именно аскорбат-радикалов.

5. Статистическая обработка результатов анализа

Метод исключения грубых промахов по Q-критерию

Метод заключается в расчете величины Q:Q = (x1 - x2) / R, где x1 - возможный промах измеренийx2 - результат измерения, ближайший по значению к х1R - размах варьирования, т.е. разность между наибольшим и наименьшим значениями. Если Q < Qтаб - результат остаетсяЕсли Q > Qтаб - результат отбрасывается

Для определения погрешности титрования следует провести ста тистическую обработку выбранных данных. Стандартное отклонение:

Погрешность титрования:

Литература

1. М. Девис, Дж. Остин, Д. Патридж «Витамин С. Химия и биохимия», Москва «Мир» 1999

Страницы: 1, 2, 3



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.