на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Высокомолекулярные соединения и поверхностно активные вещества
p align="left">Алкилсульфонаты обычно получают из насыщенных углезодородов С12 -- С18 нормального строения, к-рые сульфохлорируют или сульфоокисляют с последующим омылением или нейтрализацией продукта.

Катионоактивные IIАВ можно разделить на след. основные группы: амины различной степени замещения и четвертичные аммониевые основания, др. азотсодержащие основания (гуанидиню, гидрозины, гетероциклические соединении и т. д.), четвертичные фосфониевые и третичные сульфониевые основания.

Сырьем для катионоактвных ПАВ, имеющих хозяйственное значение, служат амины, получаемые из жирных к-т и спиртов, алкгалогенидов, а также алкилфенолов. Четвертичные аммониевые соли синтезируют из соответствующих длинноцепочечных галоидных алкилов реакцией с третичными аминами, из аминов хлоралкилированием или др. путями из синтетических спиртов, фенолов и фенольных смесей.

Большее значение как катионоактивные ПАВ и как исходные продукты в синтезе неионогенных ПАВ (см. ниже) имеют не только моно- , но и диамины, полиамины и их производные.

Амфотерные ПАВ м. б. получены из анионоактивных введением в них аминогрупп или из катионоактивных введением кислотных групп.

Такие соединения, например RNHCH2CH2COONa получают взаимодействием первичного амина и метилакрилата с последующим омылением сложноэфирной группы щелочью.

Пром-стью амфотерные ПАВ выпускаются в небольшом количестве, и их потребление расширяется медленно.

Неионогенные ПАВ. Это наиболее перспективный и быстро развивающийся класс ПАВ. Не менее 80--90% таких ПАВ получают присоединением окиси этилена к спиртам, алкилфенолам, карбоновым к-там, аминам и др. соединениям с реакционноспособными атомами водорода. Полиоксиатиленовые эфиры алкилфенолов -- самая многочисленная и распространенная группа неионогенных ПАВ, включающая более сотни торговых названий наиболее известны препараты ОП-4, ОП-7 и ОП-10. Типичное сырье -- октил-, ионил- и додецилфенолы; кр. того, используют крезолы, крезоловую к-ту, в-нафтол и др. Если в реакцию взят индивидуальный алкилфенол, готовый продукт представляет собой смесь ПАВ общей ф-лы RC6H4O(CH2O)mH, где т -- степень оксиэтилирования, зависящая от молярного соотношения исходных компонентов.

Полиоксиэтиленовые эфиры жирных к-т RСОО(СН2СН2О)mН сиyтезируют прямым оксиэтилированием к-т или этерификацией к-т предварительно полученным полиэтиленгликолем.

Полиоксиэтиленовые эфиры спиртов RО(СН2СН2О)mН приобрели важное промышленное значение, т. к. они легко поддаются биохимич. разложению в природных условиях. Их получают оксиэтилированием высших жирных спиртов, реакцией алкилбромида с мононатриевой солью полиэтиленгликоля и др. путями.

Полиоксиэтиленовые эфиры меркаптанов, как и спиртов, получают обычно оксиэтилированием третичных алкилмеркаптанов, а также первичных н-алкилмеркаптанов и нек-рых алкилбензолмеркаптанов.

Полиоксиэтиленовые производные алкиламинов составляют весьма разнообразную группу ПАВ, многие из к-рых выпускают в пром-сти. Эти ПАВ, будучи по своей природе катионоактивными, с увеличением длины полиоксиэтиленовой цепи приобретают ярко выраженные свойства неионогенных веществ. Наиболее важны в практич. отношении продукты оксиэтилирования первичных н-алкиламинов, трет-алкиламинов и дегидроабиетиламинов.

Выпускают также продукты на основе полиэтиленполиаминов, напр. диэтилентриамина, но они не имеют широкого применения. В промышленном или полупромышленном масштабе производят ПАВ с третичным алифатич. радикалом RС(СН3)2NН (СН2СН2О)mН, содержащим 12--22 атома углерода, и т = 1 -- 25; полиоксиэтилендегидроабиетиламины (на основе к-т канифоли и таллового масла); полиоксипропиленовые производные аминов -- «пропомины».

Полиоксиэтиленалкиламиды обычно получают оксиэтилированием амидов или предварительно полученных моно- или днэтилоламидов жирвых к-т (лауриновой, пальмитиновой, олеиновой).

Ряд неионогенных ПАВ получают на основе полиатомных спиртов, частично этерифицированных жирными к-тами. Используют спирты, содержащие от 2 до 6 гидроксильных групп, пентаэритрит, полиглицерины, углеводы. При оксиэтилировании к свободным гидроксильным группам исходного продукта присоединяются полиоксиэтиленовые цепи разной длины.

Др. путь получения ПАВ из полиатомных спиртов -- сначала оксиэтилирование, а затем этерификация.

Практич. значение блоксополимеров окиси этилена и окиси пропилена как ПАВ постоянно возрастает. Их получают ступенчатой полимеризацией, используя в качестве «затравки» соединения, содержащие реакционноспособные атомы водорода.

Монофункциональные исходные соединения для синтеза таких ПАВ -- одноатомные спирты, к-ты, меркаптаны, вторичные амины, N-замещенные амиды и др. Гидрофобной частью молекулы служит остаток исходного вещества, если оно имеет достаточно длинный алифатич. радикал, и полипропиленоксидный блок.

Помимо плюроников на основе функционального исходного соединения известны др. ПАВ, такие как плюродаты.

Исходными веществами с тремя функциональными группами в синтезе блоксополимерных неионогенных ПАВ могут быть глицерин и др.

Из тетрафункциональных соединений для синтеза блоксополимерных ПАВ чаще всего используют алифатич. первичные диамины. Наиболее известны тетроники.

Получают также блоксополимеры окисей алкилена на основе пентаэритрита, диатилентриамина, гекситов (сорбита и маннита), сахарозы и др.

Неионогенные ПАВ различных типа используют как исходные продукты для получения ряда ионогенных ПАВ. На основе оксиэтилированных алифатич. спиртов, алкилфенолов и др. рассмотренных выше веществ синтезируют поверхностно-активные сульфаты, фосфаты, карбоксилаты и четвертичные аммониевые соединения.

К большинству оксиэтилированньгх продуктов можно присоединить акрилонитрил с последующим переводом полученного амина в четвертичное аммониевое основание обычными методами.

Фторзамещенные ПАВ составляют обширный класс соединений. Многие фторзамещенные ПАВ разных типов получают на основе фторангидридов перфторкарбоновых и перфторсульфоновых к-т.

Высокомолекулярные ПАВ -- растворимые карбо- или гетроцепные полимеры ионогенного или неионогеного типа с мол. массой от нескольких тысяч до нескольких сотен тысяч. Среди них есть природные соединения (белки, альгенаты, пектиновые вещества и т. д.), продукты химич. обработки природных полимеров (напр., производные целлюлозы) и синтетич. полимеры.

В структуре типичных высокомолекулярных ПАВ должно быть четкое разграничение гидрофильных и гидрофобных участков. ПАВ являются сополимеры или гомополимеры, в к-рых вдоль длинной гидрофобной основной цепи расположены через определенные интервалы гидрофильные боковые цепи или группы. Типичные представители анионоактивных ПАВ этой группы -- полиакриловая и полиметакриловая к-ты, их соли и нек-рые производные, а также карбоксилсодержащие полимеры на основе поливинилового спирта, полиакриламида, сополимеров малеинового ангидрида с др. непредельными соединениями. Поверхностной активностью обладают сульфированные и сульфоэтерифицированные полимеры (полистирол, поливиниловый спирт, оксиэтилированный поликонденсат п-алкилфенола с формальдегидом и др.).

Катионоактивные полимерные ПАВ получают хлорметилированием, а затем аминированием полистирола, поливинилтолуола и др. виниловых полимеров. Особенно высока поверхностная активность солей полимерных четвертичных аммониевых оснований, в том числе солей поливинилпиридиния. для получения высокомолекулярных ионогенных ПАВ -- растворимых полиэлектролитов -- пригодно большинство методов и исходных продуктов, к-рые применяют при синтезе ионообменных смол.

Неиноногенные высокомолекулярные ПАВ можно получить оксиэтвлированием практически из любого полимера, содержащего гидроксильные или др. функциональные группы с реакционноспособными атомами водорода.

Свойства

Поверхностную активность удобно оценивать по наибольшему понижению поверхностного натяжения деленному на соответствующую концентрацию -- ККМ в случае мицеллообразующих ПАВ. Поверхностная активность обратно пропорциональна ККМ:

Образование мицелл происходит в узком интервале концентраций, к-рый становится уже и определенней по мере удлинения гидрофобных радикалов.

Простейшие мицеллы типичных полуколлоидпых ПАВ, напр. солей жирных к-т, при концентрациях, не слишком превышающих ККМ, имеют сфероидальную форму.

С ростом концентрации ПАВ анизометричных мицелл сопровождается резким возрастанием структурной вязкости, приводящей в нек-рых случаях к гелеебреаованию, т.е. полной потере текучести.

ККМ -- важный технологяч. показатель. Его можно определять раз-личными методами, т.к. в области ККМ более или менее резко меняются многие физикохимич. свойства системы ККМ находят по характерным изменениям поверхностного натяжения, светорассеяния, электропроводности, вязкости, диффузии, солюбилизации, спектральных характеристик р-ра и т.д.

ГЛБ -- условная и чисто эмпирич. характеристика, не претендующая на универсальность.

Очень специфичны по свойствам фтортензиды, неполярная часть молекулы к-рых образована фторуглеродными цепями. Вследствие слабого межмолекулярного взаимодействия низкомолекулярные фторуглероды обладают чрезвычайно малой поверхностной энергией.

Особенность фторуглеводородных ПАВ -- соединений с фторуглеродными и углеводородными радикалами -- высокая поверхностная активность в неполярных органич. жидкостях с низкой поверхностной энергией. Адсорбционный слой перфторированных ПАВ на твердой поверхности, ориентированный фторуглеродными радикалами наружу, снижает критическое поверхностное натяжение смачивания до значений меньших, чем поверхностное натяжение углеводородных жидкостей. Это значит, что такая поверхность становится не только гидрофобной, но и олеофобной, т.е. не смачиваемой маслами и др. жидкими углеводородами. Фторуглеродные цепи, вследствие высокой энергии межатомной (внутримолекулярной) связи, химически инертны и термостойки.

Применение

ПАВ находят широкое применение в пром-сти, в с.х-ве, медицине и быту. Мировое производство ПАВ растет с каждым годом, причем в общем выпуске продукции постоянно возрастает доля неионогенных веществ. Широко используют все виды ПАВ при получении и применении синтетич. полимеров. Важнейшая область потребления мицеллообразующих ПАВ -- производство полимеров методом эмульсионной полимеризации. От типа и концентрации выбранных ПАВ (эвульгаторов) во многом зависят технологич. и физико-химич. свойства получаемых латексов. ПАВ используют также при суспензионной иолимеризации. Обычно применяют высокомолекулярные ПАВ -- водорастворимые полимеры (воливиниловый спирт, производные целлюлозы, растительные клеи и т.п.). Смешиванием лаков или жидких масляносмоляных композиций с водой в присутствии эмульгаторов получают эмульсии, применяемые при изготовлении пластмасс, кожзаменителей, нетканых материалов, импрегированных тканей, водоразбавляемых красок и т.д.

В производстве лакокрасочных материалов и пластмасс. ПАВ добавляют для регулирования их реологич. характеристик.

Разнообразные ПАВ применяют для поверхностной обработки волокнистых (тканых и нетканых) и пленочных материалов ( как антистатики, модификаторы прядильных р-ров, моющие средства. Среди ПАВ, применяемых как гидрофобизаторы, наиболее перспективны кремнийорганические и фторуглеродные соединения. Последние при соответствующей ориентации молекул в поверхностном слое способны предотвратить смачивание материала не только водой, но и углеводородными жидкостями.

В производстве губчатых резин и пенопластов ПАВ применяют как стабилизаторы пен.

Высокомолекулярные водорастворимые ПАВ, помимо использования в указанных выше технологич. процессах, применяют как флокулянты в различных видах водоочистки. С их помощью из сточных и технологич. вод, а также из питьевой воды удаляют загрязнения, находящиеся во взвешенном состоянии.

Список литературы.

1. Энциклопедия полимеров, т. 1-3, М., 1972-77;

2. Стрепихеев А.А., Деревицкая В.А., Основы химии высокомолекулярных соединений, 3 изд., М., 1976;

3. Ван Кревелен Д.В., Свойства и химическое строение полимеров, пер. с англ., М.,1976;

4. Шур А.М., Высокомолекулярные соединения, 3 изд., М., 1981;

5. Enciclopedia of polymer science and technology, v. 1-16, N.Y.-[a.o.], 1964-72, Suppi.v.1-2, 1976-77.В.А.Кабанов.

6. www. provisor. com

7. www. pharm vestnik. ru

8. darnitsa. ua

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.