на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Химико-технологические системы производств кремния высокой чистоты
бразующийся Н2 поступает в систему циркуляции, а SiBr4 после очистки вновь направляют в реактор. Таким образом, достигается полное использование компонентов, участвующих в процессе.

В другой работе с целью повторного использования XC и Н2 предлагается охлаждать отходящую ПГС до - 85 oC для конденсации большей части XC. Оставшуюся газовую смесь направляют в адсорбер, в котором происходит улавливание остатка ХС. Оставшуюся смесь Н2 с НС1 промывают Н20 для растворения НС1 с получением особо чистой соляной кислоты, а Н2 подвергают осушке на силикагеле и возвращают в процесс.

Для сохранения постоянной скорости осаждения Si при восстановлении XC необходимо поддерживать определенное равновесное соотношение между три - и тетрахлорсиланом в отходящей ПГС. Это равновесное соотношение зависит от удельного расхода компонентов, мольного соотношения Н2 к XC и температуры стержней.

При изменении одного из этих параметров возрастает доля SiCl4 в отходящей ПГС. Для поддержания постоянного равновесного соотношения между TXС и SiCI4 в отходящей смеси можно корректировать один или несколько из вышеуказанных параметров.

Очистка хлорсилана

Получаемые хлорсиланы содержат большое количество примесей, очистка от которых представляет сложную задачу. Анализ литературы [1-9] свидетельствуют, что ректификация является практически единственным эффективным методом очистки хлорсиланов от микропримесей.

Необходимо отметить, что ректификация как метод очистки в значительной степени отличается от классической ректификации, предназначенной для разделения смесей. Особенностью процесса является наличие разбавленных многокомпонентных растворов.

В литературе имеется много данных о возможности разделения системы хлорсилан-хлориды микропримесей методом ректификации. Вместе с тем, практически нет данных о влиянии на разделение бинарных систем третьего компонента. В связи с этим большое значение приобретает выбор типа и конструкции ректификационных колонн. Для глубокой очистки используют колонны различных типов, в том числе ситчатые, колпачковые (с перекрестными потоками) и насадочные с затопленной насадкой.

Представляют интерес исследования, проведенные на ректификационной колонне с затопленной насадкой. Для увеличения производительности и повышения эффективности работы рекомендованы два способа поддержания слоя эмульсии в колонне: отбор части жидкости из колонны и подача ее насосом на орошение насадки; изменение свободного сечения опорной решетки при изменении давления в колонне.

Исследования показали, что оба метода позволяют контролировать работу колонны с затопленной насадкой, при этом число единиц переноса может быть увеличено в 6 раз. Оба способа могут быть осуществлены в действующих колоннах, в которых можно поддерживать в затопленном состоянии до 95% насадки.

Одним из факторов, лимитирующих глубину очистки, является присутствие внешних загрязнений самой колонны. Очевидно, что снижение содержания примесей в очищаемом продукте находится в прямой зависимости от поступления примесей из материала аппаратуры. Для обеспечения чистоты большое значение имеет конструкционный материал ректификационных колонн. С этой целью рекомендуются различные марки стали, в том числе сталь с повышенным содержанием никеля и молибдена, а так же тефлон (фторопласт).

В связи с тем, что примеси, присутствующие в хлорсиланах, имеют различную физико-химическую природу, осуществить полную и глубокую очистку от них, применяя только ректификацию, довольно сложно. Для увеличения глубины очистки используют другие методы, позволяющие выделить какую-либо одну примесь (например, сорбцию).

Известно, что удалить бор в процессе формирования монокристаллов кремния практически невозможно, а фосфор и углерод очень сложно. В то же время эти примеси оказывают существенное влияние на электрофизические параметры полупроводникового кремния: присутствие бора и фосфора снижает удельное сопротивление и увеличивает степень компенсации, а присутствие углеводорода является причиной дефектов в монокристаллах.

При выборе способов очистки следует учесть, что микросмеси удалить значительно проще, если их перевести в нелетучие или комплексные соединения. Для очистки от бора, например, пары трихлорсилана пропускают через алюминиевую стружку при 1200 оС. При этом на поверхности стружек осаждаются бор и хлорид алюминия. Очищенный таким образом трихлорсилан практически не содержит бора. Если же вести процесс при 220-2500 оС, образующийся хлорид алюминия возгоняется, что способствует активизации поверхности алюминия. Путем фракционной конденсации можно отделить трихлорсилан от хлорида алюминия. Кроме алюминия можно применять серебро, медь или сурьму. Добавка меди к алюминию позволяет одновременно очищать хлорсиланы от мышьяка и сурьмы.

В некоторых работах для очистки от бора предлагается вводить в трихлорсилан большое количество пента - или оксихлоридов фосфора. При этом образуются нелетучие комплексные соединения фосфора с бором состава PCI5хBCI3 или POCl3хBCI3, которые затем отделяют ректификацией. Для очистки от фосфора трихлорсилан насыщают хлором с переводом трихлорида фосфора в пентахлорид. При добавлении в раствор хлорида алюминия образуется нелетучее соединение PCI5xAICI3, которое затем определяют ректификацией.

Для перевода бора в нелетучее соединение в трихлорсилан предлагается добавлять трифенилтрихлорметан (или триметиламин, ацетонитрил, аминокислоту, и т.д.), образующии с бором комплекс типа (С6Н5) 3СxВС13, который затем удаляют ректификацией.

Для очистки хлорсиланов от бора предлагается так же использовать метод частичного гидролиза, который был широко распространен в 30-е 'годы. В качестве носителя воды рекомендуется использовать гидратированные оксиды или силикаты, содержащие до 3-8% масс. свободной воды. После гидролиза проводится дистилляция в теплообменнике, обогреваемом горячей водой. Температура дистилляции должна быть немного выше температуры кипения хлорсилана. Из очищенного хлорсилана получают кремний, практически не содержащий бора [Пат. N 2546957 (ФРГ), 1976; N 2328659 (Франция), 1977].

Однако все реагентные методы очистки не исключают возможности внесения дополнительных загрязнений, особенно при использовании органических соединений. Поэтому более приемлемыми являются физико-химические методы, к которым помимо ректификации относятся термические, кристаллизационные и некоторые другие.

В последние годы получил распространение метод очистки хлорсиланов ректификацией с применением инертного газа (или азота), введение которого в процесс значительно улучшает массообмен [Пат. N 2276076 (Франция), 1976]. Газ инжектируют в колонну в количестве 10% от расхода пара при температуре, близкой температуре очищаемой жидкости. После конденсации пара инертный газ отделяют и направляют на циркуляцию.

Решающее влияние на качественные характеристики поликристаллического кремния оказывает чистота хлорсиланов и водорода. Остаточное содержание микропримесей в хлорсиланах не должно превышать, ч/млрд.% бора 0,3; фосфора 1,5; мышьяка 0,05, а углеводородов не более 5 ч/млн.

Фирма "Вакер Хемитроник" [Проспект фирмы "Вакер Хемитроник", ФРГ, выпуск Е-0010, август 1981] производит сверхчистые хлорсиланы, качество которых постоянно контролируется по свойствам конечного продукта - поликристаллического кремния, или анализом самих хлорсиланов.

С этой целью кварц-тестом или измерением типа и величины проводимости контрольного монокристалла кремния, полученного традиционным методом, определяют содержание донорных и акцепторных примесей в хлорсилане. Кроме того, хлорсиланы анализируют на содержание металлических примесей УФ-спектрографом с пределом измерения, ч/млрд.% магния 0,02; кальция и алюминия 1,0; железа 5,0. Для определения органических примесей используют так же газовую хромо-тографию.

В табл. в качестве примера приведены сведения о качестве хлор-силанов различных марок, выпускаемых фирмой "Вакер Хемитроник".

Табл. Чистота хлорсиланов, применяемых в полупроводниковой технологии.

Параметр оценки качества

Трихлорсилан марки

Тетрахлорсилан марки

SW3

SWQ

RS3

RS3E

RSQ

Уровень доноров Ом8см (кварц-тест)

>2000

>4000

>1000

>2000

>4000

Уровень акцепторов 0м8см (контр. Зонная плавка)

>5000

>8000

>3000

>8000

>8000

Отсутствие объективного и быстрого метода оценки качества хлосиланов продолжает оставаться уязвимым местом в технологии полупроводникового кремния. Наряду с перечисленными выше методами предпринимались попытки разработать способ оценки чистоты хлорсилана по электрофизическим параметрам полученной из него эпитаксиальной структуры. Однако этот метод пока не получил широкого распространения из-за длительности и слабой воспроизводимости анализа.

Очистка водорода

Уровень очистки водорода оказывает существенное влияние на качество поликристаллического кремния. При одинаковой степени чистоты хлорсилана и водорода количество примесей, вносимых в реактор водородом, значительно больше, так как процесс получения кремния ведется при 8-20 кратном избытке водорода. Однако набор примесей в водороде отличается от примесей в хлорсиланах, поэтому очистка водорода представляет собой менее сложную задачу.

Технический водород (сумма примесей порядка 0,5% об.%) подвергают сорбционной или диффузионной очистке до содержания влаги, соответствующего точке росы - 65: - 80 оС. При этом получают очищенный "первичный" водород, количество примесей в котором находится в пределах 10-6-10-8 об.%

Использование диффузионного метода пока не получило распространение из-за недостатков, присущих аппаратам диффузионной очистки. Установки диффузионной очистки имеют большое количество полных или сварных швов, нарушение герметичности которых резко ухудшает качество водорода и, соответственно, кремния.

Помимо очищенного "первичного" водорода в производстве поликристаллического кремния широко используют оборотный водород, выделенный из паро-газовой смеси после водородного восстановления трихлорсилана. Количество регенерированного из паро-газовой смеси водорода обычно составляет 90%, а его чистота вполне соответствует требованиям процесса, не уступая чистоте "первичного" водорода [Пат. N 4092446 (США), 1978; N 2358379 (ФРГ), 1980].

Контроль качества водорода в практике зарубежных фирм осуществляют до и после его очистки. Технический, очищенный и регенерированный водород контролируют на содержание влаги, кислорода, метана, двуокиси углерода стандартными методами [Пат. N 2358279 (ФРГ), 1978]. На предприятии фирмы "Вакер Хемитроник" кроме контроля перечисленных параметров используют анализатор суммы примесей, определяющий их количество по изменению теплопроводности водорода. Чувствительность анализатора в 10 раз превышает предельно допустимое содержание примесей в водороде [Пат. N 2360934 (ФРГ), 1980].

Основным и наиболее объективным методом контроля качества водорода является "тестовое" осаждение кремния. Метод существует в двух модификациях. В соответствии с первой - на лабораторной установке осаждением из газовой фазы получают поликристаллический кремниевый стержень. В процессе восстановления используют хлорсилан известного качества и определяемый водород. Из поликристаллического стержня зонной плавкой получают контрольные монокристаллы, проводимость которых свидетельствует о качестве водорода. По второй - монокристалл кремния выращивают непосредственно из газовой фазы методом кварц-теста [Проспект фирмы "Вакер Хемитроник", ФРГ, выпуск Е-0010, август 1981; Пат. N 3260934, (ФРГ), 1980]. На заводе фирмы "Вакер Хемитроник" установки "тестового" осаждения применяют для повседневного контроля качества хлорсилана и водорода.

Эффективность ректификационной колонны

Эффективность выражается в виде общего КПД путем сравнения теоретического и действительного числа тарелок.

C ростом скорости пара КПД колонны увеличивается, проходит через максимум и затем снижается. Очевидно, с увеличением скорости пара улучшаются условия массообмена за счет увеличения газонасыщенности слоя на тарелках и его турбулизации, при этом разделяющая способность колонны возрастает. При дальнейшем росте скорости пара возникает явление каплеуноса жидкости с нижних тарелок на верхние, снижающее эффективность разделения, что и отмечается уменьшением КПД. Максимальное значение КПД колонны составляет 54% и сохраняется в относительно узком интервале скоростей пара.

Среднее значение КПД промышленных колонн наиболее распространенных конструкций ?50%. Эффективность ситчатых колонн в значительной степени зависит от качества их изготовления и монтажа.

Исследование процесса очистки трихлорсилана методом термодистилляции

Наряду с растворенными микропримесями, в трихлорсилане содержатся твердые взвешенные частицы субмикронных размеров, которые не оседают в жидкости под действием силы тяжести, а находятся в непрерывном броуновском движении. Работы, проведенные в ИХ АН СССР под руководством академика Г.Г. Девятых, показали, что взвешенные частицы - это новый класс примесей, распространенный так же широко, как и растворенные примеси. Помимо жидкостей и газов, где частицы присутствуют всегда и в большом количестве, они обнаруживаются также и в твердых веществах, в том числе в высокочистых монокристаллах кремния.

Эти частицы не отделяются в процессе ректификации, что связано с малой диффузной подвижностью частиц в паре, вследствие чего константа массообмена в системе жидкость-пар для взвешенных частиц в десяткм раз меньше, чем для растворенных микропримесей.

Для отделения хлорсиланов от взвешенных частиц размером менее 0,1 мкм в ИХ АН СССР разработан метод, получивший название термодисцилляции. Суть процесса заключается в том, что взвешенные частицы в поле температурного коэффициента двигаются от горячей к холодной области. Движение вызвано термофоретическим действием со стороны более нагретых молекул пара.

Лабораторная установка: пар, образующийся в кубе-испарителе, поступает в зазор между двумя кооксиально расположенными трубками, имеющими разную температуру. Температура внутренней трубки ниже температуры кипения жидкости, и на стенках этой трубки происходит частичная конденсация пара. Остальная часть пара конденсируется в холодильнике, и жидкость стекает в приемник. Твердые частицы, попадая в температурное поле, движутся от горячей стенки к холодной, по которой стекает пленка жидкости, и вместе с жидкостью возвращаются в куб-испаритель, а затем выводятся из процесса.

Исследования показали, что эффективность очистки зависит от целого ряда факторов, в том числе от скорости потока вещества, доли отвода продукта, наличия и равномерности жидкостной пленки, от температурного градиента, площади и высоты стенки, зазора между стенками. Так, с увеличением температурного градиента глубина очистки повышается. В то же время скорость движения частиц при термофорезе в паре мало зависит от свойств частиц и их размеров.

Библиографический список

Silicon for the Chemical Industry IV, Geiranger, Norway, June 3-5, 1998, 240 с.

Технология полупроводникового кремния. / Фалькевич Э.С., Пульнер Э.О., Червонный И.Ф. и др. - М.: Металлургия, 1992. - 408с.

Реньян В.Р. Технология полупроводникового кремния. Прев. с англ. Изд-во "Металлургия", 1969, с.336.

Нашельский А.Я. Технология полупроводниковых материалов. - М.: Металлургия, 1987.336с.

Лапидус И.И., Кочан Б.А., Перепелкин В.В. и др.; Металлургия поликристаллического кремния высокой чистоты. - М.: Металлургия, 1971. - 143 с.

Лапидус И.И., Нисельсон Л.А. Тетрахлорсилан и трихлорсилан. - М.: Химия. 1970. - 128с.

Шашков Ю.М. Металлургия полупроводников. - М.: Государственное научно-техническое издательство литературы по черной и цветной металлургии, 1960. - 121 с.

Таиров М.Ю. Цветков В.Ф. Технология полупроводниковых и диэлектрических материалов.: Учебник для вузов. - 2-е изд., перераб. - М.: Высш. Шк., 1990. - 423 с.,: ил.

Крапухин В.В., Соколов И.А., Кузнецов Г.Д. Физико-химические основы технологии полупроводниковых материалов.: Учебник для вузов. М.: Металлургия, 1982. - 352 с.

Страницы: 1, 2, 3, 4



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.