на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Реферат: Строение атома. Есть ли предел таблицы Менделеева?

углы большие прямого, казалось весьма не­вероятным. Резерфорд говорил, что

это так же невероятно, как если бы пуля отскакивала от листа папиросной

бумаги.

Одно из возможных объяснений аномального рассеяния состояло в том что оно

складывается из многих неболь­ших углов отклонений, вызванные атомами

рассеивающего вещества.

Исходя из модели Томсона, Резер­форд подсчитал, что это не может да­вать

больших отклонений даже при многих столкновениях с частицей. И здесь

Резерфорд обратился к плане­тарной модели.

Когда а-частица проходит мимо заряженного ядра, то под воздействием кулоновской

силы, пропорциональной заряду ядра и заряду а-частицы и обратно

пропорциональной квадрату расстояния между ними, она движется по гиперболе,

удаляясь по ее ветви после прохождения мимо ядра. Ее прямолинейный путь, таким

обра­зом, искривляется, и она отклоняется на угол рассеяния ф.

1 марта 1911 г. Резерфорд сделал в философском обществе в Манчестере доклад

«Рассеяние а- и b-лучей и строение атома». В докладе он говорил: «Рассеяние

заряжен­ных частиц может быть объяснено, если предположить такой атом,

кото­рый состоит из центрального электри­ческого заряда, сосредоточенного в

точке и окруженного однородным сфе­рическим распределением противо­положного

электричества равной ве­личины. При таком устройстве атома а- и b-частицы,

когда они проходят на близком расстоянии от центра атома, испытывают большие

отклонения, хотя вероятность такого отклонения мала».

Резерфорд рассчитал вероятность такого отклонения и показал, что она

пропорциональна числу атомов п в еди­нице рассеивающего материала,

тол­щине рассеивающей пластинки и вели­чине b2, выражаемой

следующей фор­мулой:

Реферат: Строение атома. Есть ли предел таблицы Менделеева?

где Ne— заряд в центре атома, Е—за­ряд отклоняемой частицы, т—ее

масса, и—ее скорость. Кроме того, эта вероят­ность зависит от угла

рассеяния ф, так что число рассеянных частиц на едини­цу площади

пропорционально cosec4 (Ф/2).

Важным следствием теории Резерфорда было указание на заряд атом­ного центра,

который Резерфорд поло­жил равным ± Ne. Заряд оказался

про­порциональным атомному весу.

В 1913 г. Гейгер и Марсден предпри­няли новую экспериментальную про­верку

формулы Резерфорда, подсчитывая рассеяние частиц по производимым ими

сцинтилляционным вспышкам. Из этих исследований и возникло представле­ние о

ядре как устойчивой части атома, несущей в себе почти всю массу атома и

обладающей положительным зарядом. При этом число элементарных зарядов

оказалось пропорциональным атомному весу.

В 1913 г. Ван ден Брук показал, что заряд ядра совпадает с номером элемента в

таблице Менделеева. В том же1913 г. Ф. Содди и К. Фаянс пришли закону

смещения Содди—Фаянса, ее гласно которому при а-распаде радио­активный

продукт смещается в менделеевской таблице на два номера выше а при b-

распаде—на номер ниже. К этому же времени Содди пришел представлению об

изотопах как разновидностях одного и того же элемент ядра атомов которых

имеют одинаковый заряд, но разные массы.

В богатом событиям 1913 г. были опубликованы три знаменитые статьи Бора «О

строении атомов и молекул», открывшие путь к атомной квантовой механике.

Томас Рис Вильсон (1869-1959) изо­брел замечательный прибор, известный ныне

под названием «камера Виль­сона». Этот прибор позволяет видеть заряженную

частицу по оставляемому ею туманному следу.

Позднее ученик и сотрудник Резерфорда Блэккет (1897—1974) получил

вильсоновскую фотографию расщеп­ления ядра азота а-частицей, первой ядерной

реакции, открытой Резерфордом.

В этом же году Бор, имевший возможность поработать с автором первой модели

атома, а затем с автором планетарной модели, на основе последней создает свою

теорию атома Резерфорда-Бора.

Знаменитая статья Бора, в которой были заключены основы этой теории,

начиналась с указания на модели Резерфорда и Томсона и обсуждения их

особенностей и различий.

Резерфорд сразу понял ре­волюционный характер идей Бора и высказал

критические замечания по самым фундаментальным пунктам теории Бора. После

длительных ди­скуссий статья Бора и две его после­дующие статьи были

опубликованы. Однако окончательный ответ на возра­жения Резерфорда был дан

только со­зданием квантовой механики.

В 1915 г. Бор опубли­ковал работы «О сериальном спектре водорода и строении

атома» и «Спектр водорода и гелия», «О квантовой теории излучения в структуре

атома». Он развил исследования, выполненные им в Манчестере в августе 1912

г., и опу­бликовал их под названием «Теория торможения заряженных частиц при

их прохождении через вещество».

В декабре 1915 и январе 1916 г. Ар­нольд Зоммерфельд (1868—1951) развил

теорию Бора, рассмотрев дви­жение электрона по эллиптическим орбитам и

обобщив правила квантова­ния Бора. Зоммерфельд дал также теорию тонкой

структуры спектральных линий, введя релятивистское измене­ние массы со

скоростью. В его расчеты вошла безразмерная универсальная по­стоянная тонкой

структуры:

Реферат: Строение атома. Есть ли предел таблицы Менделеева?

Теория атома после открытия Зоммерфельда стала назы­ваться теорией Бора —

Зоммерфельда.

Продолжая развивать свои идеи, Бор сформулировал принцип соответ­ствия

(1918), означавший шаг вперед в ответе на вопросы, поставленные Резерфордом.

В 1922 г. Бор получил Нобелевскую премию по физике. В нобелевском докладе он

развернул картину с стояния атомной теории к этому времени. Одним из наиболее

существенных успехов теории было нахождения. ключа к периодической системе

элементов, которая объяснялась наличие электронных оболочек, окружающих ядра

атомов.

В 1925 г. работой Гейзенберга нача­лось создание квантовой механики. В том же

году Уленбек и Гаудсмит, работавшие у Эренфеста, открыли спин электрона, а

Паули открыл принцип, носящий ныне его имя. После открытия Гейзенбергом в

1927 г. принципа неопределенности Бор выдвинул в качестве основной

теоретической идеи квантовой теории принцип дополнительности.

В 1936 г. Бор выступил со статьей «Захват нейтрона и строение ядра», в

которой предложил капельную модель ядра и механизм захвата нейтрона ядром.

Ядерной физике была посвя­щена также работа 1937 г. «О превра­щении атомных

ядер, вызванных столк­новением с материальными частица­ми».

В конце 1938—начале 1939 г. было открыто деление урана.

Atom бора

Бор, как и Томсон до него, ищет такое расположение электронов в атоме,

которое объяснило бы его физические и химические свой­ства. Бор уже знает о

модели Резерфорда и берет ее за основу. Ему известно также, что заряд ядра и

число электро­нов в нем, равное числу единиц заряда, определяется местом

элемента в перио­дической системе элементов Менделее­ва. Таким образом, это

важный шаг в понимании физико-химических свой­ств элемента. Но остаются

непо­нятными две вещи: необычайная устой­чивость атомов, несовместимая с

пред­ставлением о движении электронов по замкнутым орбитам, и происхождение

их спектров, состоящих из вполне опре­деленных линий. Такая определенность

спектра, его ярко выраженная химиче­ская индивидуальность, очевидно, как-то

связана со структурой атома.

Устойчивость атома в целом противоречит зако­нам электродинамики, согласно

кото­рым электроны, совершая периодиче­ские движения, должны непрерывно

излучать энергию и, теряя ее, «падать» на ядро. К тому же и характер движения

электрона, объясняемый законами электродинамики, не может приводить к таким

характерным линейчатым спектрам, которые наблюдаются на са­мом деле.

Линии спектра группируются в серии, они сгущаются в коротковолно­вом «хвосте»

серии, частоты линий соот­ветствующих серий подчинены стран­ным

арифметическим законам.

Так, Иоганн Бальмер в 1885 г. нашел, что четыре линии водо­рода На, Нb, Нg,

Hs имеют длины волн, которые могут быть выведены из одной формулы:

Реферат: Строение атома. Есть ли предел таблицы Менделеева?

Позже было найдено еще два десят­ка линий в ультрафиолетовой части, и их

длины волн также укладывались в формулу Бальмера.

Иоганн Ридберг в 1889-1900 гг. нашел, что и линии спектров щелочных металлов

могут быть распре­делены по сериям. Частоты линий каж­дой серии могут быть

представлены в виде разности двух членов—термов. Так, для главной серии

Реферат: Строение атома. Есть ли предел таблицы Менделеева?

где R — некоторое постоянное число, получившее название постоянной

Ридберга, s и р — дробные поправки, меняю­щиеся от серии к серии.

«Основным результатом тщатель­ного анализа видимой серии линейча­тых спектров

и их взаимоотношений, — писал Бор,—было установление того факта, что частота

v каждой линии спектра данного элемента может быть представлена с

необыкновенной точ­ностью формулой v =T’—T”, где T' и T" — какие-то два члена

из множества спектральных термов T, характеризую­щих элемент».

Бору удалось найти объяснение этого основного закона спектроскопии и

вычислить постоянную Ридберга из таких фундаментальных величин, как заряд и

масса электрона, скорость света и постоянная Планка. Но для этого ему

пришлось ввести в физику атома представления о стационарных состояниях

атомов, находясь в которых электрон не излуча­ет, хотя и совершает

периодическое движение по круговой орбите.

Для таких состояний момент им­пульса равен кратному от h/2p. При пе­реходе с

одной орбиты на другую электрон излучает и поглощает энергию, равную кванту.

В заключительных заме­чаниях к трем своим статьям «О строе­нии атомов и

молекул» Бор формули­рует свои основные гипотезы следую­щим образом:

«I. Испускание (или поглощение) энергии происходит не непрерывно, как это

принимается в обычной элек­тродинамике, а только при переходе системы из

одного «стационарного» со­стояния в другое.

2. Динамическое равновесие систе­мы в стационарных состояниях опре­деляется

обычными законами механи­ки, тогда как для перехода системы между различными

стационарными состояниями эти законы не действи­тельны.

3. Испускаемое при переходе систе­мы из одного стационарного состояния в другое

излучение монохроматично, и соотношение между его частотой v и общим

количеством излученной энер­гии Е дается равенством E=hv, где

h — постоянная Планка.

4. Различные стационарные состоя­ния простой системы, состоящей из вращающегося

вокруг положительного ядра электрона, определяются из усло­вия, что отношение

между общей энер­гией, испущенной при образовании данной конфигурации, и числом

обо­ротов электрона является целым крат­ным h/2p. Предположение о том,

что орбита электрона круговая, равнозначно требованию, что момент им пульса

вращающегося вокруг ядра электрона был бы целым кратным h/2p.

5. «Основное» состояние любой атомной системы, т. е. состояние, при

котором излученная энергия макси­мальна, определяется из условия, чтобы момент

импульса каждого электрона относительно центра его орбиты рав­нялся h/2p».

Далее Бор пишет: «Было показано, что при этих предположениях с по­мощью

модели атома Резерфорда можно объяснить законы Бальмера и Ридберга,

связывающие частоты раз­личных линий в линейчатом спектре».

Именно Бор получил для спектра водорода формулу:

Реферат: Строение атома. Есть ли предел таблицы Менделеева?

где t — целые числа.

«Мы видим,—пишет Бор,—что это соотношение объясняет закономер­ность, связывающую

линии спектра во­дорода. Если взять t2 = 2 и варьировать t1

, то получим обычную серию Бальмера. Если взять t2=3, получим в

инфра­красной области серию, которую наблю­дал Пашен и еще ранее предсказал

Ритц. При t2=1и t2=4,5,... получим в крайней

ультрафиолетовой и соответ­ственной крайней инфракрасной обла­стях серии,

которые еще не наблюда­лись, но существование которых можно предположить ».

Действительно, серия в ультрафиолетовой области, соответствующая t2=

1, была найдена Лайманом в 1916 г., серия в инфракрасной области,

соответствующая t2=4 была найдена Брэкетом в 1922 г., и серия t

2=5 была найдена Пфундом в 1924 г.

Используя известные в то время зна­чения е, т, h, Бор вычислил значение

Страницы: 1, 2, 3, 4, 5



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.