на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Шпора: Матанализ

конечные числа

Если предел f(x)=b при x→∞ то говорят, что у=b явл.

горизонтальной асимптотой f(x)

Если предел f(x)/х=k при x→∞ (k≠0;k≠∞) и предел

(f(x)-kx)=b, то y=kx+b является наклонной асимпт-й

Наклонная асимптота как и горизонтальная может быть

правосторонней или левосторонней

31 Степенным рядом наз. ряд вида (1)∑ Bn*xª =

b0+b1x+b2x².+baxª+. это ряд в котором членами являются ф-ии, в

частности степенные. Совокупность тех значений х, при которых степнной ряд

сходится, называется областью сходимости степнного ряда.

Ряд (1) наз. абсолютно сходящимся рядом, если сходится ряд (2) ∑ | bn |*|

x |ª

Т1. Если ряд (2) сходится, то сходится и ряд (1)

Т2. Для любого степ. ряда (1) сущ-ет такое неотрицат. число R≥0 что этот

ряд сходится абсолютно при | x |<R и расходится при | x |>R; R – радиус

сходимости ряда

Даламбер: lim | Bn+1 |/| Bn |<1 (n→∞) сходится

>1 (n→∞) расходится

32 Разложение ф-ий в ряд:

Если бесконечно дифференцируемая ф-ия f(x0)=a0

f`=A1+2A2(x-x0)+n*An(x-x0)ªˉ¹

f(x)=f(x0)+f1(x0)(x-x0)+.+fª(x0)(x-x0)ª/a!

Рядом Тейлора ф-ии f(x) в окрестности т. х0 называется степ. рядом отн.

разности (х-х0)

Особенно часто используется разложение ф-ии в ряд по степеням х, при этом х0=0;

f(x)=f(0)+f`(0)+f ª(0)/a!*xª

Ряд Маклорена – частный случай ряда Тейлора

eª=1+x+x²/2!+x³/3!+.+xª/a!+.

sin x=1+ x-x³/3+.+(-1)ª*(x²ªˉ¹)/(2a+1)!+.

cos x=1-x²/2!+x⁴/4!+.+(-1)ⁿ*x²ⁿ/(2n)!+.

ln(1+x)=x-x²/2+x³/3-.+(-1)ⁿxⁿ⁺¹/n+1.

33 Ф-ия F(x) наз. первообразной для ф-ии f(x) если для всех х (из области

определения) имеет место F`(x)≡f(x) нетрудно увидеть что если F(x)

является первообразной для f(x) то и для F(x)+C также явл. первообразной.

Общий вид первообразной F(x)+C называется неопределённым интегралом от ф-ии

f(x) обозначается F(x)+C=∫f(x)dx

dF(x)=F`(x)dx=f(x)dx

Св-ва неопр.∫

∫dF(x)=F(x)+C

(∫f(x)dx)`=f(x)

∫αf(x)dx=α∫f(x)dx

∫(f(x)±g(x))dx=∫f(x)dx±∫g(x)dx

Таблица интегралов

34 Метод замены переменных:

∫f(x)dx=∫f(φ(t))·φ`(t)dt → x=φ(t)

∫sin 5x dx=∫sin t 1/5dt=1/5∫sin t dt=-1/5 cost+C =-1/5cos 5x+C

5x=t; x=1/5t; dx=1/5 dt

35 Интегрир-ие по частям:

∫ U·dV=UV-∫VdU

Возможности применения связаны с тем, что дифференцир-ие может существенно

упростить один из сомножителей (при условии что дифф-ие не слишком усложнит

другой)

∫ x²·sinx dx

x²=U dU=2x dx

sin x dx =dV V=-cos x

∫ = x²·sin x dx=-x²·cos x -∫(-cos x)2x dx=-x²·cos

x+2∫x·cos x dx

x=U dU=dx

cos x dx=dV V=sin x

∫ = x²·sin x dx=-x²cos x +2(x·sin x-∫sin x dx)= -

x²·cos x+2x·sin x +2cos x+C

36 Рациональной дробью называется ф-ия, равная отношению двух многочленов

f(x)=Pm(x)/Qn(x), Pm(x)-многочлен степени m, Qn(x)- многочлен степени n.

Рациональная дробь наз. правильной если степень числителя меньше степени

знаменателя, т.е. m<n, в противном случае дробь неправильная.

Интегрирование дробей методом разложения на элементарные дроби:

1 Если дробь неправильна, то представить ее в виде суммы многочлена и

правильной дроби.

2 Разложив знаменатель дроби на множители, представить её в виде суммы

простейших рац. дробей.

3 Проинтегрировать многочлен и полученную сумму простейших дробей.

37 Определённым интегралом от ф-ии f(x) на отрезке (a; b) называется предел

интегральной суммы Sn, когда n→∞ (Δxi→0)

Шпора: Матанализ

Cв-ва опр. интеграла:

(все интегралы на отрезке от А до В)

1 ∫С·f(x)dx=C·∫f(x)dx

2 ∫(f(x)±g(x))dx=∫f(x)dx±∫g(x)dx

3 ∫f(x)dx=-∫f(x)dx

4 Если f(x)≤g(x) на (A,B), то ∫f(x)dx≤∫g(x)dx

5 Если на (А,В) m=minf(x) M=maxf(x)то m(B-

-A)≤∫f(x)dx≤M(B-A)

6 Если f(x) непрерывна на (A,B) то сущ. также точка

С∈(A;B) ∫f(x)dx=f(C)·(B-A)

7 Если f(x) непрерывна на (А,В) то ∫f(x)dx существует

8 ∫f(x)dx=∫(a→d)f(x)dx+∫(d→b)f(x)dx

9 Формула Ньютона-Лейбница:

∫f(x)dx=F(B)-F(A)→F`(x)=f(x)

38 Применение опр. ∫

1 Вычисление площадей (Н-Лейб)

Если на (А,В) f(x)>0 то S=∫f(x)dx

Если на (А,В) f(x)<0 то S=-∫f(x)dx

Если на (А,В) f(x)>g(x) то S=∫[f(x)-g(x)]dx

(действительно для всех вариантов расп. ф-ий)

2 Вычисление объёмов тел вращения

V=π∫f²(x)dx

39 Приближ. вычисление интегралов

1 Формула Н-Лейб.

2 Метод прямоугольника

(B-A)/n=h: ∫(A→B)f(x)dx~=h(f1+f2.+fn)

3 Формула трапеции ∫f(x)dx~=h(1/2·f0+f1+f2+.fn)

4 Формула Симпсона

n-чётное

∫f(x(dx=(B-A)/3n(f0+4f1+2f2+4f3+2f4+.+4fn-1+fn)

40 Несобственные ∫ бывают 2-х видов:

∫-ы вида ∫(a;+∞)f(x)dx; ∫(-∞;b)f(x)dx;

∫(-∞;+∞)f(x)dx

называются несобственными ∫-и 1-го рода

Если сущ. предел (b→∞) ∫(a;b)f(x)dx=C (C≠∞) то

интеграл сходится и наоборот.

Пусть есть числовой ряд ∑Ax=A0+A1+.An+. и пусть есть ф-ия f(x)=Ax на

интервале [ a:b) Тогда ряд и несобственный ∫(a;∞)f(x)dx сходятся

или расходятся одновременно

Если lim (x→b)f(x)=∞ или lim(x→a)f(x)=∞ то

∫f(x)dx наз. несобственным интегралом 2-го рода, он сходится если сущ.

конечный предел

lim ∫(a; b-δ)f(x)dx

δ→0

41 Пусть имеется n переменных величин, и каждому набору их значений

(x1,x2,x3.xn) из некоторого мн-ва Х соответствует одно вполне определённое

значение переменной величины Z. Тогда говорят,что задана ф-ия нескольких

переменных Z=f(x1.xn)

Если сущ-ет lim(Δx→0)f(x+Δx,y)-f(x,y)/Δx=fx`(x,y) то он

называется частной производной по переменной х.

Если сущ-ет lim(Δy→0)f(x,y+Δy)-f(x,y)/Δy=fy`(x,y) то он

называется частной производной по переменной y

Величина dZ=f`x(x;y)dx+f`y(x;y)dy называется дифференциалом от ф-ии f(x;y)

Z=f(x1+x2+.xn)dZ=f`x1·dx1+f`x2·dx2+.+f`xn·dxn

Дифференциалом ф-ии называется сумма произведений частных производных на

приращение соответствующих независимых переменных.

42 Если Z=f(x;y) имеет в точке (х0;у0) экстремум (локальный) и ф-ия

дифференцируема (т.е. имеет частные произв-ые) то частные произв-ые в этой т.

равны 0.

43 Формулы служащие для аналитического представления опытных данных получили

название эмпирических формул

Этапы вывода ЭФ:

1 Установить вид зависимости (линейная, квадратичная, логарифмическая и т.д.)

2 Определение известных параметров этой ф-ии

Для линейной зависимости сущ-ет метод наименьших

квадратов

44 ДУ называют ур-ие, связывающее искомую ф-ию одной или нескольких

переменных, эти переменные, и производные различных порядков данной ф-ии.

Решением ДУ называется такая ф-ия, котю при подстановке её в это ур-ие

обращает его в тождество.

ДУ первого порядка наз. ур-ие содержащее переменную х, неизвестную ф-ию

y=f(x) и её производную y`=f`(x)

ДУ первого порядка наз. ур-ем с разделяющимися переменными, если оно м/б

представленно в виде

dy/dx=f(x)g(y)

Для решения такого ур-ия его следует преобразовать к виду, в котором

дифференциал и ф-ии переменной х окажутся в одной части равенства, а

переменной у – в другой. Затем проинтегрировать обе части полученного рав-ва:

dy/g(y)=f(x)·dx → ∫ dy/g(y)=∫ f(x)·dx

f(x)f`(x)f(x)f`(x)
c0axªˉ¹
x12x
√x2√xarccos x-1/√1-x² |x|<1
1/x-1/x²arctg x1/1+x²
eⁿeⁿarcctg x-1/1+x²
aⁿaⁿln ash xch x
ln x1/xch xsh x
LOGaX1/x·ln ath x1/ch²x
sin xcos xcth x-1/sh²x
cos x-sinxln(x+√(x²+1))1/√(1+x²)
tg x1/cos²xarcsin x1/√(1-x²)
ctg x-1/sin²x

f(x)F(x)+C
0C
1x+C
xx²/2+C
xª⁺¹/a+1+C a≠1
1/xln| x |+C
1/x²-1/x+C
1/x³1/2x²+C
1/(1+x²)arctg x+C
1/a²+x²1/a·arctg x/a+C a≠0
1/1-x²1/2·ln| (1+x)/(1-x) |+C
1/a²-x²1/2a·ln| (a+x)/(a-x) |+C a≠0
x/x²+a1/2·ln| x²+a |+C
1/√(1-x²)arcsin x+C
1/√(a²-x²)arcsin x/a+C
eⁿeⁿ
aⁿaⁿ/ln a
ln xx ln x –x +C
sin x-cos x+C
cos xsin x+C
tg x-ln | cos x |+C
ctg xln | sin x |+C
1/cos²xtg x+C
1/sin²x-ctg x+C

1. Понятие числа (от натур. до комплексного)

2. Сложение, вычитание, *, / для комплексного числа

3. Тригонометрическая форма комплексного числа

4. Возведение в степень комплексного числа

5. Извлечение ªÖ из комплексного числа

6. Последовательность и её предел

7. Св-во сходящихся последовательностей (док-во)

8. БМВ и ограниченная последовательность. Св-ва БМВ

9. Знакоположительный ряд и его сходимость (пример)

10. Признак сравнения двух знакоположительных рядов (примеры)

11. Признаки Даламбера и Коши

12. Знакопеременный ряд. Признак Лейбница (пример)

13. Прямая и обратная функция (примеры)

14. Предел ф-ии в точке

15. Непрерывность ф-ии в точке. Св-ва непрерывных ф-ий

16. Непрерывность линейной и степенной ф-ий

17. Непрерывность ф-ий Вª и LOGaX

18. Непрерывность тригонометрической ф-ии

19. 1-ый замечательный предел

20. 2-ой замечательный предел и его применение для

начисления непрерывных %

21. Понятие производной от ф-ии. Геометрический и механический

смысл призводной

22. Понятие пр-ой. Пр-ая от +, -, * двух ф-ий

23. Понятие пр-ой. Пр-ая от / двух ф-ий

24. Понятие пр-ой. Пр-ая от Хª

25. Понятие пр-ой. Пр-ая от обратных ф-ий (LNx, eª)

26. Пр-ая от тригонометрической ф-ии.

27. Пр-ая от сложной ф-ии (пример)

28. Понятие дифференциала ф-ии. Его геометр. смысл

29. Исследование ф-ий с помощью пр-ой и пределов.

30. Понятие асимптот и их нахождение

31. Степенной ряд и область его сходимости

32. Разложение ф-ий в степенные ряды

33. Неопределённый интеграл. Табл. Интегралов

34. Метод интегрир-ия с помощью замены переменных (примеры)

35. Интегрирование по частям

36. Интегрир-ие с помощью разложения на элементарнве дроби

37. Определённый интеграл и его св-ва. Формула Ньютона-Лейбница

38. Применение опр. интегралов

39. Приближённый метод вычисления опр. интегралов

40. Несобственные интегралы

41. Ф-ии нескольких переменных. Понятие частных пр-ых и дифференциала

42. Экстремум ф-ий нескольких переменных

43. Понятие об эмпирических формулах. Метод наименьших квадратов.

44 Понятие ДУ и методы его решения.

Страницы: 1, 2



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.