на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Курсовая работа: Управление дорожными машинами через "GPS"

Агрегаты движения автогрейдера ГС 25–09

Двигатель автогрейдера ГС 25–09 ЯМЗ-236 БЕ 2–20 – это двигатель нового поколения, оснащенный новейшей системой сгорания V-ACT.

Он идеально подходит для автогрейдеров, отличается высокой топливной экономичностью и низким уровнем вредных выхлопов. Не требует установки дополнительного оборудования и устройств для дополнительной очистки отработавших газов. (рис. 5)

У такого насоса ось блока цилиндров расположена под углом к оси ведущего вала, что и определяет его название – с наклонным блоком.

Органы управления агрегатами, электронные блоки, считываемые показания с рабочих механизмов узлов и агрегатов

К органам управления автогрейдера и системы считывающей показания с узлов и агрегатов машины относятся: гидрораспределитель, осуществляющий контроль за ножами и другими агрегатами, имеющими гидроцилиндры, электронный блок управления работающий как автономно так и при индивидуальных настройках машиниста, совместно с другими электронными блоками управления получаемые сигналы по системе GPS навигации; электронная приборная панель, отображающая сигналы, получаемые от узлов и агрегатов автогрейдера через электронный блок управления в цифровом фор мате (рис. 11); гидрораспределитель, оборудованный электромагнитными клапанами для управления узлами и агрегатами автогрейдера без участия машиниста, но прежде настроивший электронный блок управления на определенный режим работы.

2.  Одночастотный 12-канальный GPS-приемник класса точности картографии и ГИС «Pathfinder ProXL»

Приемники навигационного класса точности призваны решать навигационные задачи на транспорте, в народном хозяйстве (например, при строительстве автодорог и т.д.) и отдыхе.

Приемники класса точности картографии и ГИС также относительно дешевы и доступны проектно-изыскательским и строительным организациям.

Точность приемников класса картографии и ГИС может быть существенно повышена при базовом варианте их использование в случае применения базовых станций, и они могут быть использованы при решении большинства инженерно-геодезических задач, включая задачи, решаемые режиме реального времени (например, съемка плана и продольного профиля существующей автомобильной дороги с движущегося автомобиля).

Приемники геодезического класса точности весьма недешевы, однако даже в автономном режиме работы обеспечивают определение координат точек местности с точностью до 1–3 см. в кинематическом режиме и до 1 см. при статических измерениях, и поэтому применимы для решения практически любых инженерно-геодезических задач.

При огромном многообразии приемников «GPS», обеспечивающих выполнение инженерно-геодезических задач на изысканиях и в строительстве, нужно стремиться приобретать приемники и геодезические системы, работающие не только с орбитальным комплексом США «NAVSTAR», но, прежде всего, работающие с отечественной навигационной системой «ГЛОНАСС».

Одночастотные и двухчастотные приемники, работающие на одной частоте радиоволн в практике инженерно-геодезических работ используют и многоканальные приемники, работающие с использованием кодов на двух частотах: 1575,72 MHz и 1227,6 MHz. Приемники такого уровня обеспечивают более точное определение координат точек местности, в связи с возможностью дифференцированного учета для каждого рабочего спутника ионосферных и тропосферных задержек, а так же обеспечивает быструю инициализацию (присваивание начальных значений) приемника, что особенно актуально в местах, где могут частично блокироваться сигналы спутников.

По точности определения координат и назначению различают приемники следующих классов: навигационного класса с точностью определения координат 150–200 метров; класса картографии и ГИС с точностью определения координат 1–5 метров; геодезического класса с точностью определения координат до 1 см.

3.  Техническая характеристика компьютерного тахеометра «Geodimeter AT-MC»

Современные электронные тахеометры, обеспечивающие прямой обмен информации с полевыми и базовыми персональными компьютерами снабжены сервоприводами, и дистанционным компьютерным управлением, система автоматического слежения за целью и набором универсальных, полевых геодезических программ.

В настоящее время в России используют главным образом импортные компьютерные тахеометры (станции) различных конструктивных особенностей, точности и назначений.

Высокоэффективный компьютерный тахеометр «Geodimeter AT-MC» (рис. 14) специально разработан для автоматического управления работой дорожно-строительных машин и механизмов (бульдозеров, автогрейдеров, асфальтоукладчиков и т.д.).

Технические характеристики компьютерного тахеометра:

Средняя квадратическая погрешность измерения углов:

· Стандартны режим……………………….……….1``

· Режим слежения…………………………………..2``

Измерения расстояний:

· Стандартный режим……………±(1+3ppm x D) мм

· Режим слежения…………………..±(2+3ppm x D) мм

Диапазон измерения расстояний…………………………..до 3200 м

Масса тахеометра со встроенным источником питания.………8,5 кг

Диапазон рабочих температур……………………….от -20º С до +50º С

Электронные тахеометры – многофункциональные геодезические приборы, представляющие собой комбинацию кодового теодолита, встроенного в светодальномера и специализированного мини-компьютера, обеспечивающие запись результатов измерений во внутренние или внешние блоки памяти.

К настоящему времени в развитых зарубежных странах и в России разработано и производится большое число электронных тахеометров, различающихся конструктивными особенностями, точностью и назначением.

Современные электронные тахеометры, как правило, позволяют решать следующие инженерные задачи:

·  Определение недоступных расстояний;

·  Определение высот недоступных объектов;

·  Определение дирекционных углов;

·  Обратная засечка;

·  Определение трехмерных координат реечных точек;

·  Вынос в натуру трехмерных координат точек;

·  Измерение со смещением по углу;

·  Вычисление площадей и т.д.

С пульта тахеометра можно вводить следующую информацию в память компьютера:

Кп – поправочный коэффициент на изменение температуры и давления;

(i – l) – разность высот тахеометра и отражателя;

H0 – высота станции. При вводе этой информации тахеометр срзу определяет абсолютные высоты точек визирования H, по умолчанию – превышения h;

А0 – дирекционный угол опорного направления. При вводе этой информации тахеометр определяет дирекционные углы направлений на точке визирование А, по умолчанию – справа по ходу лежащие горизонтальные углы β;

Х0, Y0 – координаты точки стояния прибора. При вводе этой информации тахеометр сразу определяет координаты точек визирования X, Y, по умолчанию – приращения координат от опорного направления ∆X, ∆Y;

Км – число целых километров в измеряемом расстоянии.

Электронный тахеометр автоматически учитывает при измерениях влияния кривизны Земли и рефракции атмосферы.

4.  Метод использования системы «GPS»

При строительстве автомобильных дорог, подготовке основания устройства земляного полотна, перемещения и профилирования строительных материалов учитываются точные параметры использования материалов и расположение их в дорожной одежде, например, чтобы равномерно расположить слой дорожной одежды из щебня площадью 3000 м2, толщиной 0,25 м по всей площади требуется высокая квалификация машиниста и исправная техника. Но здесь присутствует человеческий фактор, случаются ошибки при профилировании больших площадей дорожных одежд, поэтому основание получается неровным волнообразным.

Чтобы избежать этого дорожные инженеры применяют сложную программируемую дорожно-строительную технику с полным программным контролем. Для этого при строительстве автомобильной дороги на дорожно-строительную технику устанавливают дополнительное оборудование, которое программируется и выполняет работу без участия человека.

Рассмотрим установку дополнительного оборудования на автогрейдер ГС 25–09. для того чтобы автогрейдер получал сигналы, на него устанавливают одночастотный GPS приемник (рис. 13), который подключается к электронному блоку управления автогрейдера (рис. 10). Электронный блок управления обрабатывает сигналы и управляет электромагнитными клапанами гидрораспределителя. Положение ножа автогрейдера в плане при перемещении и планировании щебня по основанию, выдерживая уклоны и толщину, регулируется автоматически без участия машиниста автогрейдера. Все сигналы, вычисленные по профилю дорожного полотна, были введены инженером-строителем в компьютерный тахеометр при геодезических работах. Все сигналы, обрабатываемые тахеометром, вводятся в трехмерной системе координат x, y, z, которые посылаются через спутниковую систему GPS на автогрейдер. Получая сигналы, электронный блок управления обрабатывает их и управляет необходимым узлом и агрегатом для этой точки местности поднимать или отпускать нож автогрейдера. Находясь в другой точке местности, поучая другой сигнал, аппаратура реагирует на выполнение заданных параметров толщины и угла наклона, профиля дорожного основания.

При строительстве дороги, при использовании электронно-вычислительной техники исключается возможность проявления человеческого фактора. Все параметры проекта производства работ прослеживаются и обрабатываются компьютером.

Единственным недостатком при использовании такого метода распределения материалов по дорожному основанию является пробуксовка колес автогрейдера на дорожном основании при накоплении перед ножом автогрейдера большого вала из строительного материала. Для устранения пробуксовки необходимо остановить весь процесс работы, чтобы поднять нож и распределить материал в другую сторону для дальнейшего передвижения автогрейдера заданными параметрами планировки строительного материала. Чтобы избежать эти недостатки, используют тяжелые автогрейдеры, которые оснащены полноприводной системой передвижения 1–3–3. Они обладают хорошими передвижными характеристиками и справляются в тяжелых условиях распределением материалов, чем автогрейдеры, оснащенные системой передвижения 1–2–3.


Заключение

Тахеометрическая съемка является самым распространенным видом наземных топографических съемок, применяемых при инженерных изысканиях объектов строительства. Высокая производительность тахеометрических съемок обеспечивается тем, что все измерения, необходимые для определения пространственных координат характерных точек местности, выполняют комплексно с использованием одного геодезического прибора – теодолита-тахеометра. При этом положение снимаемой точки местности в плане определяют измерением полярных координат: измеряют горизонтальный угол между направлениями на одну из соседних точек съемочного обоснования и снимаемую точку и измеряют расстояние до точки нитяным дальномером или лазерным дальномером электронного тахеометра. Высотное положение снимаемых точек определяют методом тригонометрического нивелирования.

На современном этапе развития научно-технического прогресса происходят фундаментальные изменения технологии и методов проектно-изыскательских работ и строительство инженерных объектов, что находит отражение в изменении состава и методов производства инженерно-геодезических работ, а так же в качественном изменении парка используемого геодезического оборудования.

Очевидно, инженер-строитель, инженер-мелиоратор, инженер лесного хозяйства на современном этапе должны хорошо владеть как традиционными методами геодезии (последние так или иначе применяются и будут применяться при изысканиях, проектирования, строительстве и эксплуатации), так и новыми высокопроизводительными методами инженерно-геодезических работ.

Инженер должен уметь работать как с традиционными видами инженерно-геодезической информацией – топографическими картами и планами, так и с их электронными аналогами – электронными картами (ЭК), являющимися основой ГИС, цифровыми (ЦММ) и математическими моделями местности (МММ), на базе которых осуществляется системное автоматизированное проектирование инженерных объектов на уровне системы автоматизированного проектирования (САПР).


Список использованных источников и литературы

1.  Инженерная геодезия: учебник/Г.А. Федотов. – М.: Высш. шк., 2002. – 463 с.: ил.

2.  Автомобильные дороги. Проектирование и строительство / Под ред. профессоров В.Ф. Бабкова, В.К. Некрасова и Г. Щилиянова. – М.: Транспорт. 1983. – 239 с.

3.  Механика промышленных роботов: Учеб. Пособие для втузов: В 3 кн. / Под ред. К.В. Фролова, Е.И. Воробьева. Кн. 3: Основы конструирования/Е.И. Воробьев, А.В. Бабич, К.П. Жуков и др. – М.: Высш. шк., 1989. – 383 с.: ил.

4.  Ранев А.В., Полосин М.Д. Устройство и эксплуатация дорожно-строительных машин: Уеб. для нач. проф. образования. – М.: ИРПО; Изд. Центр «Академия», 2000. – 488 с.: ил.

5.  Попов В.Г. Строительство автомобильных дорог // Пособие для мастеров и производителей работ дорожных организаций/МАДИ(ГТУ). – М., 2001. – 185 с.


Страницы: 1, 2, 3



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.