на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Дипломная работа: Интегрированные системы безопасности в гражданской авиации

Т Рис. 1


Можно сделать следующие выводы:

·  Наибольшие ассигнования на опережающие и блокирующие противодействия должны выделяться по тем направлениям, для которых эффективность защиты минимальна, а вероятность угроз ощутима.

Такими направлениями являются:

·  противодействие внешним угрозам (в форме силового проникновения);

·  противодействия внутренним угрозам (сговор, хищение собственности);

·  В первом случае основное внимание должно уделяться блокирующим мероприятиям с использованием инженерно-технических решений. Во втором упреждающим противодействиям, связанным с кадровой работой.


Глава 2 Интегрированные системы безопасности (ИСБ)

Обеспечение безопасности крупных объектов - крайне сложная задача. Ее решение требует учета множества взаимосвязанных факторов. Увеличение штата охранников и наращивание технических средств безопасности часто не дает желаемого результата: охранник не может контролировать все рубежи защиты. Поэтому вопрос повышения уровня безопасности решается нашей компанией иными средствами: с помощью построения интеллектуальных интегрированных систем (ИСБ).

ИСБ обладают высокой эффективностью и надежностью за счет взаимодополнения и резервирования технических средств. В ней отсутствуют избыточные линии связи, управление осуществляется оперативно и централизованно с помощью автоматизированных рабочих мест.

В последнее время наблюдаются тенденции к объединению технических средств обеспечения безопасности в единую интегрированную систему, включающую охранную сигнализацию, управление доступом, телевизионное наблюдение, контрольные и др. устройства. Интегральные системы бывают разного уровня, начиная от простого объединения в одну систему, например, охранной сигнализации и контроля доступом, до сложной системы управления.

2.1 Составные части ИСБ

Составными частями ИСБ являются:

·  сеть датчиков, которая обеспечивает получение максимально полной информации со всего пространства, находящегося в поле зрения службы безопасности, позволяет воссоздать на центральном пункте наблюдения всестороннюю и объективную картину состояния помещений и территории объекта и работоспособности всей аппаратуры и оборудования;

·  исполнительные устройства, способные при необходимости действовать автоматически или по команде оператора;

·  пункты (или пункт) контроля и управления системой отображения информации, через которые операторы могут следить за работой всей системы в пределах своих полномочий;

·  центральный процессор с программирующим устройством, наглядно представляющий информацию датчиков и накапливающий ее для последующей обработки;

·  коммуникации, через посредство которых обеспечивается обмен информацией между элементами системы и ее операторами.

Такая структура интегрированной системы безопасности дает возможность обеспечить:

·  контроль за большим количеством помещений с созданием нескольких рубежей защиты;

·  иерархический доступ сотрудников и посетителей в помещения с четким разграничением полномочий по праву доступа в помещения и по времени суток и по дням недели;

·  идентификация личности человека, пересекающего рубеж контроля доступа;

·  слежение за точным исполнением персоналом охраны своих служебных обязанностей;

·  предупреждение попадания на объект запрещенных материалов, веществ, оружия и устройств;

·  взаимодействие постов охраны и органов правопорядка при несении охраны и в случае локализации происшествий;

·  накопление документальных материалов для использования их при расследовании и анализе происшествий;

·  оперативный инструктаж работников системы о порядке действий в различных штатных и нештатных ситуациях путем автоматического вывода на монитор текста инструкций в нужный момент.

Кроме того, гибкое программирование функций интегрированной системы дает возможность противодействовать таким ухищрениям для проникновения на защищенные объекты, как прерывание каналов передачи тревожной информации, нейтрализация части системы людьми, имеющими доступ к ее элементам, проникновение с сигналом тревоги и последующим уничтожением информации о происшествии, использование отклонений от предписанного порядка несения службы персоналом охраны, создание нештатных ситуаций в работе системы.

2.1.1 Функционирование системы

Ядро системы - центральный компьютер (сервер), который управляет подключенным к нему модулем охранно-пожарной сигнализации, цифрового видеонаблюдения и контроля доступа, а также модулями пожаротушения, оповещения, управления инженерными сетями здания и т.д. В ответ на событие, произошедшее в одной подсистеме, происходит соответствующее действие в Другой. Видеокамера показывает место, где сработал охранный датчик; контроллер системы доступа выключает свет и кондиционер в помещении, откуда ушел последний сотрудник, а затем ставит это помещение под охрану; на экране монитора происходит сравнение фотографии сотрудника и видеоизображения человека, предъявившего карту доступа.

Центральный компьютер собирает в единое целое данные от всех информационных систем и представляет ее операторам в доступном для восприятия графическом виде. Одновременно система осуществляет постоянный контроль за действиями охраны. В случае непреднамеренного или умышленного повреждения автоматизированных рабочих мест центральный сервер без потери контроля над системой зафиксирует все нештатные ситуации.

Большим преимуществом системы является возможность дистанционного сетевого управления, при котором все параметры модулей контролируются по цифровым сетям связи, будь то Ethernet (Internet), ISDN или просто телефонная линия. Наша система позволяет создавать точки мониторинга в различных местах организации, часто весьма удаленных друг от друга. Мощная защита предотвратит возможные попытки взлома или перехвата управления.

2.1.2 Интеграция техники системы безопасности

Программное обеспечение (ПО) компьютеров интегрированной технической системы безопасности (ИТСБ) должно централизованно и единообразно обслуживать подключенные к системе технические средства (видеокамеры, вообще система видеонаблюдения, система управления доступом, системы вентиляции и кондиционирования и что там еще потребуется). Но это не главное. Основное требование к интегрированной системе - обеспечение эффективного взаимодействия техники и людей (см. статью в предыдущем номере). ПО ИТСБ должно поддерживать отработку Службой Безопасности (СБ) различных алгоритмов реакции на плановые и, главное, внеплановые события. Существенно, что эти алгоритмы уникальны для каждого объекта. Поэтому важной чертой систем высокого класса (например, BSW у ЗАО "Компания Безопасность" и другие) является возможность не только настраивать автоматические реакции системы на события, но и задавать сложные алгоритмы с участием оператора (или даже нескольких операторов) системы, с участием линейных сотрудников СБ, с участием обычных сотрудников объекта (неспециалистов из СБ).

Различные человеко-машинные алгоритмы применяются уже давно, но сейчас по мере роста мощности и возможностей компьютеров широкого назначения, по мере накопления опыта применения таких систем, реализуются все более сложные внутри и все более простые снаружи (удобные для оператора) системы.

Минимальное требование, всегда предъявлявшееся к системе охранной сигнализации, - фиксация тревоги до ее подтверждения оператором. Сигнал тревоги (сирена) продолжается до тех пор, пока оператор не нажмет кнопку "сброса" тревоги. По мере совершенствования систем вместо нажатия на кнопку стал требоваться ввод кода, затем ввод индивидуального кода, с тем чтобы впоследствии можно было выяснить, кто именно проверил причину тревоги и отключил сирену.

Подобный алгоритм — верификация тревоги с ее последующим сбросом (если она ложная или несущественная) или, наоборот, с объявлением общей боевой тревоги и вызовом сил противодействия противнику (если тревога вызвана действительно серьезным посягательством). Пожалуй, это самый первый "человеко-машинный" алгоритм.

2.1.3  Уровни интегрирования

Центральный процессор объединяет единую систему в группу:

·  региональных подсистем (систему видео-наблюдения, контроля доступа, охранную и пожарные сигнализации, видео-базы данных пользователей и обеспечивает их взаимодействие, каждая из подсистем автоматически выполняет какие-либо действия при поступлении определенного сигнала от любой другой;

·  местные контрольные устройства, являясь блоками, способными "принимать решения", управляют небольшой группой сигнализационных датчиков, считывателями карт, исполнительными устройствами (замками, шлагбаумами, лифтами и т. д.)

2.1.4  Преимущества интегрированных систем

Интегрированные системы обладают следующими преимуществами:

1. Благодаря гибкой архитектуре, интегрированная система быстро конструируется из определенного набора модулей и блоков практически для любых условий и объектов разной величины;

2. В процессе эксплуатации легко наращивается нужное количество дополнительных объектов охраны, и совершенствуются функции системы путем подключения различных типов регистрирующих и исполнительных устройств (например, ведение электронной картотеки с изображениями пользователей системы, управления лифтами и дверьми, ведение отчетности о посещаемости и т.д.);

3. Возможна скрытая маркировка наиболее ценных предметов в помещении для того, чтобы регистрировался факт их выноса из данного помещения. При этом, если предмет выносит человек с «правами собственности», система лишь зафиксирует факт выноса (или приноса), в противном же случае подается сигнал тревоги;

4. При необходимости можно использовать контрольные панели со связью по радиоканалу для подключения к системе объектов, удаленных от центрального поста или в условиях целесообразности прокладки кабельной связи, Такие панели осуществляют связь по 100 из 160 возможным радиочастотам, причем конкретные радиочастоты определяются случайно, для каждого сеанса, что практически исключает возможность постороннего вмешательств в работу системы.

Система контроля доступа, например, рассчитана на любое количество дверей от одной до 4096. Охранные системы позволяют контролировать от 16 до 36000 сигнализационных точек. Системы видеонаблюдений могут иметь до 999 телекамер и 256 мониторов. Базы данных видео-идентификации способны обрабатывать неограниченное число изображений, при этом соблюдается полная интеграция систем в единую автоматизированную комплексную систему безопасности.


2.2 Интеграция средств систем охраны

Некоторые вопросы стандартизации требований по электромагнитной совместимости

В настоящее время оценка соответствия требованиям электромагнитной совместимости (ЭМС) является обязательной для всех радиоэлектронных устройств, изделий телемеханики, электро-, радиотехнического профиля и т.п. Технические средства и системы охраны, о которых пойдет речь в статье, относятся к таким изделиям

Оценка устойчивости технических средств и систем охраны (ТСО) к электромагнитным помехам (ЭМП) в общем случае может включать измерения таких параметров, как:

·  уровень помех во внутренних цепях и соединениях узлов, блоков ТСО;

·  режим работы отдельных узлов, блоков ТСО после воздействия установленного уровня помех;

·  режим работы отдельных приборов, устройств, средств до, во время и после воздействия установленного уровня помех;

·  функционирование интегрированных систем охраны и комплексных систем безопасности в целом: до, во время и после воздействия установленного уровня помех.

Испытания по первым трем видам могут проводиться в лабораторных условиях испытательных центров. Испытания по установлению работоспособности интегрированных систем охраны (ИСО), комплексных систем безопасности (КСБ) могут проводиться как в лабораторных условиях, так и на реальных объектах, что требует разработки специальных программ испытаний для каждой системы.

Требования к ЭМС технических средств и систем охраны в настоящее время устанавливаются по ГОСТ 30379-95 - ГОСТР 50009-92 "Совместимость технических средств охранной, пожарной и охранно-пожарной сигнализации электромагнитная. Требования, нормы и методы испытаний на помехоустойчивость и индустриальные радиопомехи".

В стандарте установлены регламентируемые характеристики устойчивости ТС ОПС к воздействию ЭМП по пяти степеням жесткости (первая - низшая). Выбор норм, методов испытаний и степеней жесткости осуществляют лица, разрабатывающие, согласовывающие и утверждающие техническое задание или технические условия на ТС ОПС в соответствии с ГОСТ 29280.

Отбор образцов для сертификационных испытаний проводят по ГОСТ 29037, обработку результатов измерений и их оценку по ГОСТ 16842, ГОСТ 29073 и ГОСТ 29280*. В ранее разработанных стандартах подобные требования к ЭМС отсутствуют. Их нет среди основных параметров (ГОСТ 26342) и показателей (ГОСТ 4.188) ТСО.

В ГОСТ 27990-88 "Средства охранной, пожарной и охранно-пожарной сигнализации. Общие технические требования" в качестве требований к перспективным ТС ОПС были введены следующие показатели:

·  электрический импульс в цепи питания;

·  электростатический разряд;

·  кратковременное прерывание сети;

·  электромагнитные поля.

В настоящее время срок действия стандарта фактически истек (до 01.01.2000 г.).

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.