на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Исследование структурной надежности методом статистического моделирования
p align="left">pi ¤ pi = pi (1.7)

Напомним, что второй сомножитель (1.7) имеет смысл вероятности исправной работы i-го элемента при условии его исправности, которая, очевидно, равна единице.

Для сокращения дальнейших выкладок введем следующее обозначение ненадежности i-го элемента:

(1.8)

С учетом (1.7) и (1.8) можно записать следующие простые правила преобразования выражений:

;

;

;(1.9)

;

;

;

Для примера использования этих правил при расчете надежности рассмотрим простейшую сеть связи, изображенную на рисунке 1.3. Буквы, стоящие у ребер графа, обозначают показатели надежности соответствующих линий связи. Узлы для простоты будем считать идеально надежными. Предположим, что для связи между узлами А и В можно использовать все пути, состоящие из трех и менее последовательно включенных линий, то есть следует учесть подмножество путей {м} = { ab, cdf, cgb, ahf }. Определим приращение надежности, обеспечиваемое каждым последующим путем, по формуле (1.4) с учетом (1.6):

? ,(1.10)

где аналогично (1.8).

Рисунок.1.3 - Пример сети расчета на ограниченном подмножестве путей

Рисунок 1.4 - Пример сети для расчета надежности по полной совокупности путей

Применяя последовательно формулу (1.10) и правила символического умножения (1.9) к рассматриваемой сети, получаем:

?;

?;

?;

?.

При расчете последнего приращения мы использовали правило 4, которое можно назвать правилом поглощения длинных цепей короткими; в данном случае его применение дает b ¤ cgb = b. Если разрешено использование других путей, например пути cdhb, то не представляет труда рассчитать обеспечиваемое им приращение надежности ?. Результирующую надежность сети можно теперь вычислить как сумму приращений, обеспечиваемых каждым из рассмотренных путей:

HR =?Hi (1.11)

Так, для рассмотренного примера в предположении, что надежность всех элементов сети одинакова, то есть a = b = c = d = f = h = g = p, получаем:

.

При машинной реализации в основу расчета можно также положить формулу (1.5) ,с учетом того, что

?.(1.12)

Таким образом, окончательное выражение, согласно формуле (1.5), можно записать в виде следующего рекуррентного соотношения:

. (1.13)

При начальном условии , на каждом последующем шаге из полученного ранее выражения для следует вычесть произведение надежности очередного пути на это же выражение, в котором показатели надежности всех элементов, входящих в путь , нужно положить равными единице.

В качестве примера рассчитаем надежность сети, изображенной на рисунке 1.4, относительно узлов А и В, между которыми имеется 11 возможных путей передачи информации. Все расчеты сведены в таблицу 1.1: перечень элементов, входящих в каждый путь, результат умножения надежности данного пути на значение Qr, полученное при рассмотрении всех предыдущих путей, и результат упрощения содержимого третьего столбца по правилам (1.9). Окончательная формула для содержится в последней колонке, если ее читать сверху вниз.

Таблица 1.1 Результаты расчета надежности сети, изображенной на рисунке 1.4

Номер

Пути

1

2

3

4

5

6

7

8

9

10

11

Для уменьшения объема вычислений не следует без необходимости раскрывать скобки; если промежуточный результат допускает упрощения (приведение подобных членов, вынесение за скобку общего множителя и так далее), их следует выполнить.

Поясним несколько шагов расчета. Поскольку Q0 = 1 (при отсутствии путей сеть разорвана), то для Q1 из (1.13) . Делаем следующий шаг и, согласно (1.13), получаем: и так далее.

Рассмотрим подробнее шаг, на котором учитывается вклад пути 9. Произведение показателей надежности составляющих его элементов, записанное во втором столбце таблицы 1.1, переносится в третий. Далее в квадратных скобках записана вероятность разрыва всех предыдущих восьми путей, накопленная в четвертом столбце (начиная с первой строки), с учетом правила (1.7), согласно которому показатели надежности всех элементов, вошедших в путь 9, заменяются единицами. Вклад четвертой, шестой и седьмой строк оказывается равным нулю по правилу 1. Далее выражение, стоящее в квадратных скобках, упрощается по правилам (1.9) следующим образом:

.

Аналогичным образом производится расчет относительно всех других путей.

Использование рассматриваемого метода позволяет получить общую формулу структурной надежности, содержащую в рассмотренном случае всего 15 членов вместо максимального числа 211=2048, получающегося при непосредственном перемножении вероятностей отказов этих путей. При машинной реализации метода удобно представить все элементы сети в позиционном коде строкой бит и использовать встроенные булевы функции для реализации логических элементов преобразований (1.9).

До сих пор рассматривались показатели структурной надежности сети относительно выделенной пары узлов. Совокупность таких показателей для всех или некоторого подмножества пар может достаточно полно характеризовать структурную надежность сети в целом. Иногда используется другой, интегральный, критерий структурной надежности. По этому критерию сеть считается исправной, если имеется связь между всеми ее узлами и задается требование на вероятность такого события.

Для расчета структурной надежности по этому критерию достаточно ввести обобщение понятия пути в виде дерева, соединяющего все заданные узлы сети. Тогда сеть будет связана, если существует, по крайней мере, одно связывающее дерево, и расчет сводится к перемножению вероятностей отказа всех рассматриваемых деревьев с учетом наличия общих элементов. Вероятность отказа дерева s определяется аналогично вероятности отказа пути, то есть:

,

где pis - показатель надежности элемента i, входящего в дерево s; ns - число элементов в этом дереве.

Рассмотрим для примера простейшую сеть в виде треугольника, стороны которого взвешены показателями надежности а, b, с соответствующих ветвей. Для связности такой сети достаточно существования, по крайней мере, одного из деревьев аb, bс, са. Используя рекуррентное соотношение (1.4), определяем вероятность связности этой сети

H cb = ab + bca + cab.

Если а = b = с = р, получаем следующее значение вероятности связности, которое легко проверить перебором:

H cb = 3р2 - 2р3.

Для расчета вероятности связности достаточно разветвленных сетей вместо перечня связывающих деревьев, как правило, удобнее пользоваться перечнем сечений {у} которые приводят к потере связности сети по рассматриваемому критерию. Легко показать, что для сечения справедливы все введенные выше правила символического умножения, только вместо показателей надежности элементов сети в качестве исходных данных следует использовать показатели ненадежности q = 1 - p. Действительно, если все пути или деревья можно считать включенными “ параллельно ” с учетом их взаимозависимости, то все сечения включены в этом смысле “ последовательно ”. Обозначим вероятность того, что в некотором сечении s нет ни одного исправного элемента, через . Тогда можно записать

,(1.14)

где qis - показатель ненадежности элемента, входящего в пятое сечение.

Вероятность Нcb связности сети можно тогда представить аналогично (1.6) в символическом виде:

,(1.15)

где r - число рассматриваемых сечений. Другими словами, для того чтобы сеть была связна, необходимо, чтобы одновременно были исправны хотя бы по одному элементу в каждом сечении с учетом взаимной зависимости сечений по общим элементам. Формула (1.15) является в некотором смысле двойственной по отношению к формуле (1.6) и получается из последней заменой путей на сечения и вероятностей исправной работы на вероятности пребывания в состоянии отказа. Аналогично двойственным по отношению к формуле (1.13) является рекуррентное соотношение:

Hr+1 = Hr - рr+1 ¤ Hr.(1.16)

Рассчитаем для примера вероятность связности рассмотренной выше треугольной сети с набором сечений ab, bc, ca. Согласно (1.15) при начальном условии имеем:

Hcd = ab - bca - cab,

а при одинаковых показателях ненадежности элементов сети (a = b = c = q) получим: . Этот результат совпадает с ранее полученным по методу перечисления деревьев.

Метод сечений можно, конечно, применять и для расчета вероятности связности сети относительно выделенной пары узлов, особенно в тех случаях, когда число сечений в рассматриваемой сети значительно меньше числа нулей. Однако наибольший эффект в смысле сокращения трудоемкости вычислений дает одновременное использование обоих методов.

1.2.3 Метод двухсторонней оценки

При проектировании реальных сетей обычно отсутствует необходимость точного расчета надежности сети, так как исходные данные по надежности элементов задаются, как правило, с некоторой конечной точностью. Проектировщикам необходимо лишь убедиться в том, что надежность сети, с одной стороны, не ниже заданной и, с другой стороны, не имеет экономически необоснованного запаса. Другими словами, на практике достаточно гарантировать, что истинное значение надежности находится в некоторых пределах Hmin< < Hmax.

Можно ожидать, что оценка надежности сети с заданной конечной точностью позволит сократить трудоемкость расчетов в тем большей мере, чем ниже требуемая точность оценки. Действительно, при расчете надежности по совокупности путей, добавление каждого следующего пути приводит к увеличению надежности, а при расчете по совокупности сечений добавление каждого следующего сечения приводит к уменьшению структурной надежности, что создает предпосылки для двусторонней оценки структурной надежности с гарантированной точностью по ограниченным наборам путей и сечений. Рассмотрим эту возможность более подробно.

Обозначим через результат, полученный при перемножении вероятностей отказов первых r из общего числа n путей. Тогда с учетом следующего (r + 1) пути согласно (1.13) получим уточненную оценку :

(1.17)

Функция является монотонно неубывающей с возрастанием r и при дает точное значение . Промежуточные значения при можно рассматривать, как оценки снизу. Аналогично, исходя из формулы (1.15), можно получить монотонно не возрастающую последовательность , которую можно рассматривать, как последовательность оценок сверху. Характер зависимости и от r представлен на рисунке 1.5. Опыт показывает, что рассматриваемые зависимости при малых r меняются весьма круто, а с дальнейшим увеличением r очень медленно приближаются к общему пределу . Это свойство можно использовать для сокращения трудоемкости оценок надежности с заданной точностью. Действительно, для решения задачи достаточно последовательно просматривать пути м, пока не выполнится условие , а затем просматривать сечения у, пока не выполнится условие . Если для некоторого m окажется, что, то можно прекратить расчеты и принять решение, что в сети заложена излишняя избыточность. Если же для некоторого r окажется, что , то это значит, что требования к надежности сети не выполняются. Число требующих просмотра путей m и сечений r обычно гораздо меньше общего числа путей n и общего числа сечений k (m << n, k << r), чем и достигается сокращение трудоемкости оценки. Одновременно гарантируется, что истинное значение надежности сети лежит в заданных пределах, а именно: .

Рисунок 1.5. Характер изменения оценок структурной надежности по совокупности путей и сечений

Точность оценки может быть задана в виде допустимых отклонений от ис-тинного значения . В этом случае просмотр путей и сечений следует вести до тех пор, пока не выполнится условие . В частности, если , то условие прекращения расчетов имеет вид ,а в ка-честве оценки надежности следует принять следующую величину:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.