на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Моделювання процесу обробки сигналів датчика у вихровому потоковимірювач
p align="left">- фільтра для частоти 500 Гц дорівнює 3,183 *10^-4;

- дискретизація фільтру дорівнює 8 по 0,0002 с, що забезпечує помилку меншу за 1 %.

Результати експерименту з використанням генератора псевдовипадкових чисел на СРОС можна побачити на рисунку 3.8.

Експеримент з використанням генератора псевдовипадкових чисел на СРОС був проведений з наступними параметрами:

- максимальна амплітуда шуму 2048

- амплітуда синусоїди 1.5 В (ефективне значення амплітуди);

- амплітуда синусоїди (ефективне значення) обиралася в залежності від відношення сигнал-шум та середньоквадратичного відхилення шуму;

- фільтра для частоти 500 Гц дорівнює 3,183 *10^-4;

- дискретизація фільтру дорівнює 8 по 0,0002 с, що забезпечує помилку меншу за 1 %.

Результати експерименту з використанням стандартного генератору псевдовипадкових чисел у MathCad2001 можна побачити на рисунку 3.7.

3.3 Результати експериментів

Характеристики, отримані аналітично й експериментально без врахування квадратичної залежності між частотою та амплітудою, мають спільні риси. Причому, є точка перетинання всіх кривих. Також були проведені розрахунки більш наближені до реальних датчиків з врахуванням квадратичної залежності амплітуди сигналу від частоти. Обчислювання математичного очікування кількості нулів відбувалося на певному часовому інтервалі так і за певну кількість періодів.

За умов використання фільтрації ковзного згладжування з параметрами, коли при фільтрації залишалися частоти до 600 - 700 Гц, тоді отримані графіки нагадували рис. 4 та рис. 5. При цьому на частоті 500 Гц коефіцієнт передачі падав до 0,2-0,3. Коли фільтрацію зробили після 1000 Гц, на 500 Гц коефіцієнт піднявся до 0,8 - 0,9, тоді отримані графіки стали відповідати отриманим аналітичним шляхом.

При використанні RC-фільтрації з параметром 500 Гц були отримані ті самі рисунок 3.4 та рисунок 3.5.

Такі результати експериментів пояснюються тим, що в теоретичних розрахунках Бендат [5] використовував ідеальний фільтр який має коефіцієнт передачі 1 на частотах, що проходять крізь фільтр і 0 - на тих що фільтруються. Звичайно таку фільтрацію за реальних умов забезпечити неможливо, тому можна спостерігати розбіжності з отриманими результатами експериментальним шляхом.

Експеримент з урахування квадратичної залежності амплітуди від частоти нічого несподіваного не показав. Було підтверджено що за умови збільшення процентної присутності шуму у сигналі межа зменшується з боку низьких частот. Визначили числові значення цих частот за різних співвідношень сигнал/шум.

За умов використання фільтрів, як і очікувалося відбувається збільшення області достовірних вимірів в залежності від співвідношення сигнал/шум.

Результати отримані за умов використання двох різних фільтрів загалом однакові, але з практичної точки зору RC-фільтр набагато простіше зробити. Тому рекомендується використовувати цей фільтр у практичних експериментах.

4 Визначення кількості перетинів корисного сигналу з нульовим рівнем за допомогою методики для квантованого у часі сигналУ

4.1 Визначення дискретної частоти за допомогою перетинів нульового значення

В даному розділі будуть наведені методи ті, що використовують ітеративні фільтраційні процедури для визначення частот сигналів, схованих у шумі компонент. Подана методика використовує параметричну фільтрацію для рекурсивного визначення частот дискретних спектральних компонент.

Визначення частоти - класична задача аналізу часових рядів. Майже сотні років періодограми широко застосовувалися для аналізу та визначення спектрів. Швидке перетворення Фур'є (FFT), що являє собою ефективний алгоритм для оцінки періодограм у частотах Фур'є, підтримує популярність цього важливого інструмента. Але на протязі більш ніж десяти останніх років багато авторів пропонували методи ітеративної фільтрації для визначення частот дискретних гармонік [8, 11-14].

Корисна математична модель, так саме, як і та, що ми використовуємо у цьому прикладі, це наступна суміш сигналів стаціонарного процесу,

, (4.1)

де, - дискретні значення часу;

А та В всі не корельовано, - математичне відхилення, та - дисперсія.

Взагалі, приймаємо - підкрашений стаціонарний шум з нульовим середнім значенням і дисперсією , незалежною від А та В. Шум, приймаємо, має абсолютно неперервну спектральну функцію зі спектральною щільністю , . Для нашої мети ми приймаємо, що {Zt} - Гаусів процес. Але Гаусовість не є необхідною для параметричної фільтрації за методом Яковітца [16]. Також покажемо, що частота для нас є низка упорядкованих констант в межах (0,) [15],

, (4.2)

Загальна задача це визначити частоти , використовуючи кінцеву довжину реалізації (спостереження) з часового ряду Z1, Z2, ...,ZN.

Іншими словами, наша основна стратегія це фільтрувати спостереження Z1, Z2, ...,ZN за допомогою фільтру з параметричного сімейства лінійних фільтрів, спостерігати статистику перетинів нуля виходу фільтру, а потім обирати інший фільтр (зміною параметра) з сімейства на базі статистики, що спостерігається. При деяких умовах ця ітеративна процедура сходиться і точне значення частоти може бути отримане.

4.2 Очікуване число перетинів нуля Гаусова процесу

Нижче подано формули для визначення очікуваної кількості перетинів нуля Гаусова процесу. Наведемо обидва випадки: безперервного та дискретного часу.

Якщо стаціонарний Гаусів процес {Zt}, для , з нормалізованою автокореляційною функцією має дуже гладку форму, що середнє число перетинів нуля за одиницю часу, дорівнює за формолою Райса [4].

, (4.3)

де D - число перетинів нуля у реалізації {Zt} для t у одиничному інтервалі [0, 1];

є друга похідна нормалізованої автокореляційної функції від {Zt} у нулі.

Ялвісакер в 1965 довів формулу Райса строго при пом'якшуючих умовах і показав, що очікувана кількість перетинів нулів скінченна якщо, і тільки якщо, автокореляційна функція двічі може бути диференційована в точці .

Аналогічна формула для дискретного часу, для процесу з нульовим середнім, для стаціонарної Гаусової послідовності {Zк}, була отримана багатьма авторами [7] і виглядає як:

, (4.4)

або, еквівалентно, в інверсній формі:

, (4.5)

де D1 - число змін знаків або перетинів нуля у реалізаціях Z1, ...,ZN;

- кореляція послідовності {Zк};

- очікувана число перетинів нуля при дискретному часі.

Ця формула (4.5) має назву - косинусна формула. Спостерігаємо, що через стаціонарність очікуване число перетинів нуля - не залежить від N. Взагалі повинен бути кореляцією, див. Кедем (1991). Оскільки лінійна фільтрація Гаусова процесу дає результат Гаусів процес, косинусна формула придатна для фільтрованого процесу, де кореляційний коефіцієнт і число перетинів нуля фільтрованого процесу використано у косинус ній формулі (4.5). Для точності, нехай буде вихід у момент t з лінійного з незмінними у часі параметрами фільтру La, що був застосований до процесу {Zt}. Використовуючи косинусну формулу (4.5) і спектральне подання для стаціонарних процесів, коефіцієнти кореляції першого порядку фільтрованого процесу отримаємо вираз [15]:

, (4.6)

де Da - число перетинів нуля в {La(Z)1, ...,La(Z)N,};

- функція спектрального розподілу процесу {Zt};

- квадрат коефіцієнту передачі фільтру La.

Перетини нуля Da фільтрованого часового ряду називаємо “Перетини вищого порядку” або НОС [7].

Для даного з нульовим середнім часового ряду {Zк} і сімейства параметричних фільтрів з пространством параметрів , , відповідає НОС сімейство помічено як .

4.3 НК - алгоритм. Параметричний фільтр АR(1)

Ітеративна схема, наведена нижче, ілюструє метод для виявлення однієї частоти у Гаусовому шумі. Наша модель це (4.1) з р = 1 та білим Гаусовим шумом. Алгоритм має собою наступні гарантії збіжності НОС послідовності до частоти у нашій моделі. Сімейство фільтрів це експоненціальний фільтр, що згладжує, або авторегрсійний порядку 1, АR(1)-фільтр.

Фільтр АR(1), відомий як ( - фільтр) визначається операцією:

, (4.7)

або еквівалентно в його рекурсивній формі:

, (4.8)

де квадрат коефіцієнта передачі фільтру заданий виразом:

(4.9)

де

Параметричний фільтр АR(1) має фундаментальні властивості відносно білого шуму [15].

(4.10)

Тому НОС послідовність та на практиці емпіричні числа або ті, що спостерігаються, перетинів нуля обчислюються по формулі Е[Dak] на кожній стадії в ітерації і шумовий процес не обов'язково повинен бути білим - він повинен бути з неперервним спектром. На рисунку 4.1 можна побачити як підстроюється параметр в залежності від вхідного сигналу у конкретному випадку при використанні даного алгоритму на практиці.

Рисунок 4.1 - Зміна параметра на протязі двадцяти ітерацій.

На рисунку 4.2 показано, як в процесі двадцяти ітерацій змінюється спектр сигналу. Можна побачити, як коефіцієнт передачі, рівномірний по всіх частотах, поступово переходить у бік низьких частот, тим самим виділяючи потрібну частоту корисного сигналу.

Рисунок 4.2 - Зміна спектру сигналу під час обробки алгоритмом НК.

К - енергетична складова гармонік, N - кількість перетинів нульового рівня

Далі буде показана реалізація алгоритму HK з використанням фільтру AR(1). Реалізація цього алгоритми була виконана з наступними параметрами:

- параметр , де k = 20 - кількість проходів по вхідної послідовності, N = 32 - кількість інтервалів, на яку розбивається вхідна послідовність , D - число перетинів нуля на попередніх інтервалах;

- кількість точок на одному інтервалі Ni дорівнює 512;

- кількість періодів синусоїди в одному інтервалі дорівнює 10 і відповідно

кількість перетинів нульового рівня - 20;

- загальна довжина вхідної послідовності дорівнює 16384 точок;

- точок відліку на один період припадає 51;

- 1024 точкам відліку у часовому вимірі відповідає 1 секунда;

- частота синусоїди дорівнює 20.0784 Гц;

- загальна довжина вхідної послідовності 16 секунд;

- кількість перетинів нуля вхідної послідовності 639.

Для проведення експерименту по виявленню корисного сигналу на фоні завади, була використана стандартна функція пакету Mathcad 2001 для отримання шуму з потрібними параметрами. Перед використанням алгоритму HK з фільтру AR(1) попередньо синусоїду з відомими параметрами змішуємо з отриманим шумом. Далі, під час проведення експерименту, можна простежити, як цей алгоритм знаходить у зашумованому сигналі потрібну частоту. Цей процес на протязі двадцяти ітерацій, з новим обчисленням параметру після проходження усієї вхідної послідовності, можна спостерігати на рисунку 4.3.

Рисунок 4.3 - Пошук потрібної кількості перетинів нульового рівня вхідним сигналом. Nі - номер ітерації алгоритму, N - кількість перетинів нульового рівня.

Зміну поточної кількості перетинів нульового рівня вхідним сигналом, на протязі двадцяти ітерацій, з новим обчисленням параметру після кожного інтервалу вхідної послідовності, можна спостерігати на рисунку 4.4.

Рисунок 4.4 - Пошук потрібної кількості перетинів нульового рівня вхідним сигналом.

На рисунку 4.4 спостерігаються підвищення поточної кількості перетинів нульового рівня вхідним сигналом рівномірно через однакові проміжки часу. Це пов'язано з тим, що алгоритм починає проходження вхідної послідовності з початку, а історія обчислень була накопичена на інтервалах в кінці послідовності і послідовність була змінена. Тому відбувається швидке підстроювання параметрів під нові інтервали.

З метою визначення ефективності даного алгоритму при обробці сигналу, в якому ефективно значення шуму відносно сигналу дорівнює, більше та менше. Для зручності співвідношення сигнал/завада обираємо наступними: 2, 1, 0,5. Також паралельно провадилися експерименти з ініціалізацією початкового значення параметру наступними значеннями 0,1, 0,5, 0,9, -0,1, -0,5, -0,9.

За для зручності аналізу отриманих результатів було прийнято рішення подавати результати на двовимірному графіку через те, що на тривимірному графіку важко порівнювати різні експерименти. Кожен графік буде подавати інформацію про експерименти з одним співвідношення але з різними початковими значеннями параметру .

Описані експерименти проводилися для двох різновидів алгоритмів HK з використанням фільтру сімейства AR(1).

У першому варіанті алгоритму проводилася зміна поточної кількості перетинів нульового рівня вхідним сигналом, на протязі двадцяти ітерацій, з новим обчисленням параметру після кожного інтервалу вхідної послідовності.

У другому варіанті алгоритму проводилася зміна поточної кількості перетинів нульового рівня вхідним сигналом, на протязі двадцяти ітерацій, з новим обчисленням параметру після проходження усієї вхідної послідовності.

Для отримання моделі завади була використана стандартна функція пакету Mathcad 2001 для отримання шуму з потрібними параметрами. Її амплітуда при генерації задавалася за допомогою стандартного математичного відхилення. Для порівняння амплітуди синусоїди з завадою використовувалося діюче значення амплітуди сигналу синусоїди.

Страницы: 1, 2, 3, 4



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.