на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Порівняльний аналіз ефективності та складності швидких алгоритмів сортування масивів
p align="left">, де , .

Апроксимуючи цю суму інтегралом, отримаємо наступну оцінку :

, де .

Однак істинна кількість порівнянь на кожному етапі може бути більшою ніж log(i) на 1. Тому

.

Нажаль покращення, що породженні введенням бінарного пошуку, стосується лише кількості операцій порівняння, а не кількості потрібних переміщень елементів. Фактично кількість перестановок M залишається величиною порядку N2. Для досить швидких сучасних ЕОМ рух елемента, тобто самого ключа і зв'язаної з ним інформації, займає значно більше часу, ніж порівняння самих ключів. Крім того сортування розглядуваним методом вже впорядкованого масиву за рахунок log(i) операцій порівняння вимагатиме більше часу, ніж у випадку послідовного сортування з прямим включенням. Очевидно, що кращий результат дадуть алгоритми, де перестановка, нехай і на велику відстань, буде пов'язана лише з одним елементом, а не з переміщенням на одну позицію цілої групи.

1.3 Сортування прямим вибором

На відміну від включення, коли для чергового елемента відшукувалося відповідне місце в "готовій" послідовності, в основу цього методу покладено вибір відповідного елемента для певної позиції в масиві. Цей прийом базується на таких принципах :

1) на i-ому етапі серед елементів a i , a i+1 , ..., a N вибирається елемент з найменшим ключем a min ; 2) проводиться обмін місцями a min та a i .

Процес послідовного вибору і перестановки проводиться поки не залишиться один єдиний елемент - з самим найбільшим ключем.

Такий алгоритм можна записати у вигляді послідовності команд :

for i:=1 to N-1 do

begin

k:=номер найменшого ключа серед a[i], ..., a[N];

обмін місцями a[k] та a[i]

end;

А програмна реалізація методу прямого вибору матиме вигляд процедури

Procedure Straight_Selection;

Var

i, j, k : integer; x : basetype;

Begin

for i:=1 to N-1 do

begin

x:=a[i]; k:=i;

for j:=i+1 to N do

if a[j]<x then begin x:=a[j]; k:=j end;

x:=a[k]; a[k]:=a[i]; a[i]:=x

end

End;

Аналіз прямого вибору. Очевидно, що кількість порівнянь ключів Ci на i-ому виборі не залежить від початкового розміщення елементів і дорівнює N-i. Таким чином

Кількість же перестановок залежить від стартової впорядкованості масиву. Це стосується переприсвоєнь у внутрішньому циклі по j при пошуку найменшого ключа.

В найкращому випадку початково впорядкованого масиву Mi=4 ; в найгіршому випадку зворотно впорядкованого масиву Mi=Ci+4 ; для довільного масиву рівномовірно можливе значення Mi=Ci/2+4. Тому для оцінки ефективності алгоритму по перестановках можна скористатися наступними співвідношеннями:

;

;

.

Як і в попередньому випадку алгоритм прямого вибору описує процес стійкого сортування.

1.4 Сортування прямим обміном

Даний метод базується на повторенні етапів порівняння сусідніх ключів при русі вздовж масиву. Якщо наступний елемент виявиться меншим від попереднього, то відбувається обмін (звідси і назва методу). Таким чином, при русі з права наліво за один етап найменший ключ переноситься на початок масиву. Зрозуміло, що кожен наступний прохід можна закінчувати після позиції знайденого на попередньому етапі мінімального елемента, оскільки всі елементи перед ним вже впорядковані. Розглядуваний процес дещо нагадує виштовхування силою Архімеда бульбашки повітря у воді. Тому цей алгоритм ще називають "бульбашковим" сортуванням.

Програмна реалізація методу прямого обміну або "бульбашки" матиме вигляд процедури:

Procedure Buble_Sort;

Var

i, j : integer; x : basetype;

Begin

for i:=2 to N do

for j:=N downto i do

if a[j-1]>a[j] then begin x:=a[j]; a[j]:=a[j-1]; a[j-1]:=x end

End;

Якщо етапи порівняння та обміну проводити зліва направо, то відбуватиметься виштовхування найбільшого елемента вкінець масиву. Очевидно такий процес відповідає опусканню під дією сили тяжіння камінця у воді. Назвемо цей алгоритм "камінцевим" сортуванням :

Procedure Stone_Sort;

Var

i, j : integer; x : basetype;

Begin

for i:=1 to N-1 do

for j:=1 to N-i do

if a[j]>a[j+1] then begin x:=a[j]; a[j]:=a[j+1]; a[j+1]:=x end

End;

Обидва алгоритми згідно із визначаючим принципом вимагають досить великої кількості обмінів. Тому виникає питання, чи не вдасться підвищити їх ефективність хоча б за рахунок зменшення операцій порівняння? Цього можна добитися при допомозі наступних покращень:

1) фіксувати, чи були перестановки в процесі деякого етапу. Якщо ні, то - кінець алгоритму ;

2) фіксувати крім факту обміну ще і положення (індекс) останнього обміну. Очевидно, що всі елементи перед ним або після нього відповідно для сортування "бульбашкою" або "камінцем" будуть впорядковані ;

3) почергово використовувати алгоритми "бульбашки" і "камінця". Тому що для чистої "бульбашки" за один прохід "легкий" елемент виштовхується на своє місце, а "важкий" опускається лише на один рівень. Аналогічна ситуація з точністю до навпаки і для "камінця". Такий алгоритм називається "шейкерним" сортуванням.

Читачу пропонується самостійно модифікувати наведені вище процедури з врахуванням цих покращень.

Аналіз прямого обміну. Розглянемо спочатку чисту "бульбашку". Для "камінця" оцінки будуть такими ж самими. Зрозуміло, що кількість порівнянь ключів Ci на i-ому проході не залежить від початкового розміщення елементів і дорівнює N-i. Таким чином

Кількість же перестановок залежить від стартової впорядкованості масиву. В найкращому випадку початково впорядкованого масиву Mi=0 ; в найгіршому випадку зворотньо впорядкованого масиву Mi=Ci*3; для довільного масиву рівноймовірно можливе значення Mi=Ci*3/2. Тому для оцінки ефективності алгоритму по перестановках можна скористатися наступними співвідношеннями:

;

;

.

Очевидно, що і цей алгоритм, аналогічно з іншими прямими методами, описує процес стійкого сортування.

Розглянемо тепер покращений варіант "шейкерного" сортування. Для цього алгоритму характерна залежність кількості операцій порівняння від початкового розміщення елементів в масиві. В найкращому випадку вже впорядкованої послідовності ця величина буде . У випадку зворотньо впорядкованого масиву вона співпадатиме з ефективністю для чистої "бульбашки".

Як видно, всі покращення не змінюють кількості переміщень елементів (переприсвоєнь), а лише зменшують кількість повторюваних порівнянь. На жаль операція обміну місцями елементів в пам'яті є "дорожчою" ніж порівняння ключів. Тому очікуваного виграшу буде небагато. Таким чином "шейкерне" сортування вигідне у випадках, коли відомо, що елементи майже впорядковані. А це буває досить рідко.

Розділ ІІ. Швидкі методи сортування масивів

2.1 Сортування включенням із зменшуваними відстанями - алгоритм Шелла (1959)

Шелл вдосконалив пряме включення. Він запропонував проводити послідовне впорядкування підмасивів з елементів, які знаходяться на великих відстанях. При цьому на кожному наступному етапі відстані між елементами в групах мають зменшуватися.

Для ілюстрації алгоритму розглянемо його покрокове описання. Не обмежуючи загальності, в якості прикладу спочатку зупинимося на масиві з кількістю елементів, що є степенем двійки, тобто :

1) на першому етапі окремо групуються і сортуються елементи, розміщені на відстані N/2 . Це є впорядкування N/2 підмасиві по 2 елементи, яке називатимемо N/2-сортування .

2) на другому етапі виконується впорядку вання N/4 підмасивів по 4 елементи на відстані N/4 - N/4-сортування і т.д.

На останньому етапі виконується одинарне сортування (впорядкування на відстані 1). Наприклад :

44 55 12 42 94 18 06 67

етап I-сортування

44 18 06 42 94 55 12 67

етап II-сортування

06 18 12 42 44 55 94 67

етап III-сортування

06 12 18 42 44 55 67 94

Виникає питання, чи використання багатьох процесів сортування із залученням всіх елементів не збільшить кількість операцій, тобто складність алгоритму? Але на кожному проході або впорядковується відносно мало елементів (початкові етапи), або елементи вже досить добре впорядковані і вимагається відносно мало перестановок (кінцеві етапи). Кожне i-те сортування об'єднує дві групи, вже впорядковані 2i-тим сортуванням. Очевидно, що відстань між елементами груп можна зменшувати по-різному, головне, щоб остання була одиничною. Останній прохід в найгіршому випадку і виконує основну роботу. Варто зауважити, що такий довільний підхід при зменшенні відстаней не погіршує результату і у випадку кількості елементів N, що не є степенем двійки.

Нехай виконується t етапів. Відстані між елементами в окремих групах на кожному етапі позначимо : h1 , h2 , ..., h t , де h t=1, h i+1<h i , i=1, 2, ..., t-1. Таким чином розглядаються h-ті сортування. Кожне h-те сортування можна реалізувати будь-яким із прямих методів. Зокрема, вибір включення оправданий кращою в порівнянні з іншими алгоритмами ефективністю по перестановках ключів. Однак, чи варто для спрощення умови припинення пошуку місця включення чергового елемента користуватися методом бар'єрів? Оскільки кожне h-те сортування потребує свого власного бар'єра, то прийдеться розширити масив не на одну компоненту a0 , а на h1 компонент. На першому етапі - це практично половина всіх елементів. У випадку "довгих" масивів прийдеться порушити правило сортування "на своєму місці". Тому не варто заради економії однієї логічної операції на кожному етапі впорядкування жертвувати такими об'ємами пам'яті.

Кількість етапів сортування t як і відстані на кожному з них можна вибирати довільно. Зокрема, це може бути кількість цілочисельних поділів числа N на 2, тобто t=[log(N)]. В якості прикладу пропонується процедура сортування методом Шелла для масиву із 16 елементів :

Procedure Shell_Sort;

Const t=4;

Var

m, i, j, k : integer;

h : array [1..t] of integer;

x : basetype;

Begin

h[1]:=8; h[2]:=4; h[3]:=2; h[4]:=1;

for m:=1 to t do

begin

k:=h[m];

for i:=k+1 to N do

begin

x:=a[i]; j:=i-k;

while (x<a[j]) and (j>0) do

begin

a[j+k]:=a[j]; j:=j-k

end;

a[j+k]:=x

end

end

End;

Аналіз алгоритму Шелла. Поки що не має чітко обгрунтованих виборів відстаней, які давали б найкращу ефективність. Самим цікавим є те, що ці відстані не повинні бути множниками один одного, а тим більше степенями деяких чисел. Це дозволяє уникнути явища, коли на певному етапі взаємодіють дві групи, які до цього ніде ще не перетиналися. Взагалі, бажано, щоб взаємодія окремих ланцюгів відбувалася якомога частіше. Вірною є наступна теорема :

Страницы: 1, 2, 3, 4



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.