на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Порівняльний аналіз ефективності та складності швидких алгоритмів сортування масивів
p align="left">2.4Сортування вибором при допомозі дерева - алгоритм Heap Sort

Прямий вибір - повторюваний пошук найменшого елемента серед N елементів, N-1 елементів, N-2 і т.д. Кількість порівнянь при цьому (N2-N)/2. Для підвищення ефективності необхідно залишати після кожного етапу побільше інформації окрім ідентифікації найменшого ключа.

Після N/2 порівнянь можна знайти в кожній парі елементів найменший, після N/4 порівнянь - менший із пари вже вибраних на попередньому кроці і т.д. Виконавши загалом N/2+N/4+...+2+1=N-1 порівнянь, можна побудувати дерево вибору та ідентифікувати його корінь як шуканий найменший елемент. Наприклад

крок I \ / \ / \ / \ /

44 12 06

крок II \ / \ /

12 06

крок III \ /

06

На наступному етапі сортування проводиться рух вздовж віток, які відмічені мінімальними елементом, і вилучення його з дерева шляхом заміни на пустий елемент.

44[]

\ / \ / \ / \ /

44 12 18 []

\ / \ /

12 []

\ /

[]

Далі здійснюється заповнення "дірок" у дереві. На першому рівні залишається "дірка" від вилученого елемента, а на наступних знову вибирається менший із двох сусідніх попереднього рівня. "Дірка" при порівнянні вважається як завгодно великим значенням.

44[]

\ / \ / \ / \ /

44 12 18 67

\ / \ /

12 18

\ /

12

Елемент, що опинився в корені, - знову найменший. Після N таких кроків дерево стане пустим, в ньому будуть лише одні "дірки" (сортування закінчене). На кожному з N етапів виконується log(N) порівнянь. Тому на весь процес впорядкування потрібно порядку N*log(N) операцій плюс N-1 операцій для побудови дерева. Це значно краще ніж N2 для прямих методів і навіть краще ніж N1,2 для алгоритму Шелла. Однак при цьому виникає проблема збереження додаткової інформації. Тому кожен окремий етап в алгоритмі ускладнюється.

Корисно було б, зокрема, позбутися від "дирок", якими вкінці буде заповнене все дерево, і які породжують багато непотрібних порівнянь. Крім того, виникає потреба такої організації даних за принципом дерева, яка б вимагала N одиниць пам'яті, а не 2N-1. Цього вдалося добитися в алгоритмі Heap Sort, який розробив Д. Уілльямс. Він використав спеціальну деревовидну структуру - піраміду.

Піраміда - це означене, тобто задане елементами кореневе бінарне дерево, яке визначається як послідовність ключів a L , a L+1 , ..., a R , для якої справедливі нерівності

та для .(1)

Таким чином бінарне дерево сортувань виду

a1

/ \

a2=42a3=06

/ \ / \

a4=55a5=94a6=18a7=12

являє собою піраміду, а елемент a1 буде найменшим в розглядуваній множині : a1=min(a 1 , a 2 , ..., a N).

Припустимо, що є деяка піраміда із заданими елементами a L+1 , ..., a R для певних значень L та R, і потрібно ввести новий елемент x, утворюючи таким чином розширену піраміду a L , a L+1 , ..., a R . В якості вихідної візьмемо піраміду a 1 , a 2 , ..., a 7 із попереднього прикладу і добавимо до неї зліва елемент a 1=44. Нова піраміда отримується так : спочатку x ставиться зверху деревовидної структури, а потім він поступово опускається вниз кожен раз в напрямку меншого з двох прилеглих до нього елементів, а сам цей менший елемент переміщується вгору. Процес просіювання продовжується доти, поки в жодній з прилеглих вершин не буде елемента меншого за нововведеного. В розглядуваному прикладі ключ 44 спочатку поміняється місцями з ключем 06, а потім з 12, і в результаті отримується таке дерево

06

/ \

42

/ \ / \

94 18

Характерно, що такий метод просіювання залишає незмінними умови (1), які визначають піраміду.

Р. Флойд запропонував певний "лаконічний" алгоритм побудови піраміди "на тому ж місці". Вважається, що деяка частина елементів масиву a m , a 2 , ..., a N (m=Ndiv2) вже утворює піраміду - нижній шар відповідного бінарного дерева, для них ніякої впорядкованості не вимагається. Тепер піраміда розширюється вліво; кожен раз добавляється і просіюваннями ставитться у відповідну позицію новий елемент. Ці дії реалізуються проседурою Sift :

Procedure Sift(L, R : integer);

Var

i, j : integer; x : basetype;

Begin

i:=L; j:=2*L; x:=a[L];

if (j<R) and (a[j+1]<a[j]) then j:=j+1;

while (j<=R) and (a[j]<x) do

begin

a[i]:=a[j]; a[j]:=x; i:=j; j:=2*j;

if (j<R) and (a[j+1]<a[j]) then j:=j+1

end

End;

Таким чином, процес формування піраміди із N елементів a 1 , ..., a N "на тому ж місці" є повторюваним виконанням процедури Sift при зміні параметра L=Ndiv2, ..., 1 :

L:=N div 2 +1;

while L>1 do

begin

L:=L-1;

Sift(L, N)

end;

Для ілюстації алгоритму розглянемо попередній варіант масиву :

44 |

44 |

44 |

44 | 42

06

Тут жирним шрифтом виділені добавлювані до піраміди елементи; підкреслені - елементи, з якими проводився обмін.

Для того, щоб отримати не тільки часткове, а і повне впорядкування серед елементів послідовності, потрібно виконати N зсувних етапів. Після кожного проходу на вершину дерева виштовхуватиметься черговий найменший ключ. Знову виникає питання : де зберігати "спливаючі" верхні елементи і чи можна проводити перестановки "на тому ж місці"? Це легко реалізувати, якщо кожен раз брати останню компоненту піраміди - це буде просіюваний ключ x, ховати верхній елемент з попереднього етапу в звільнене позицію, а x зсувати на відповідне місце. Зрозуміло, що після кожного етапу розглядувана піраміда буде скорочуватися на один елемент справа. Таким чином, впорядкування масиву буде здійснено за N-1 прохід :

06 42 12 55 94 18 44 67обмін 67 і 06

67 42 12 55 94 18 44 | 06просіювання 67

12 42 18 55 94 67 44 | 06обмін 44 і 12

44 42 18 55 94 67 | 12 06просіювання 44

18 42 44 55 94 67 | 12 06обмін 67 і 18

67 42 44 55 94 | 18 12 06просіювання 67

42 55 44 67 94 | 18 12 06обмін 94 і 42

94 55 44 67 | 42 18 12 06просіювання 94

44 55 94 67 | 42 18 12 06обмін 67 і 44

67 55 94 | 44 42 18 12 06просіювання 67

55 67 94 | 44 42 18 12 06обмін 94 і 55

94 67 | 55 44 42 18 12 06просіювання 94

67 94 | 55 44 42 18 12 06обмін 94 і 67

94 | 67 55 44 42 18 12 06просіювання 94

94 | 67 55 44 42 18 12 06

Тут жирним шрифтом виділені просіювані по піраміді елементи; підкреслені - елементи, між якими проводився обмін.

Процес сортування описується за допомогою процедури Sift таким чином:

R:=N;

while R>1 do

begin

x:=a[1]; a[1]:=a[R]; a[R]:=x;

R:=R-1;

Sift(1, R)

end;

Як видно з прикладу, отриманий порядок ключів фактично є зворотнім. Це легко виправити, помінявши напрямок відношення порівняння в процедурі Sift на протилежний. Остаточно процедура сортування масиву методом Heap Sort матиме вигляд :

Procedure Heap_Sort;

Var

L, R : integer; x : basetype;

Procedure Sift(L, R : integer);

Var

i, j : integer; x : basetype;

Begin

i:=L; j:=2*L; x:=a[L];

if (j<R) and (a[j]<a[j+1]) then j:=j+1;

while (j<=R) and (x<a[j]) do

begin

a[i]:=a[j]; a[j]:=x; i:=j; j:=2*j;

if (j<R) and (a[j]<a[j+1]) then j:=j+1

end

End;

Begin

L:=N div 2 +1; R:=N;

while L>1 do

begin L:=L-1; Sift(L, N) end;

while R>1 do

begin

x:=a[1]; a[1]:=a[R]; a[R]:=x;

R:=R-1;

Sift(1, R)

end

End;

Аналіз алгоритму Heap Sort. Як вже раніше відмічалося, складність алгоритму по операціях порівняння є величиною порядку O(N*log(N)+N). Кількість переміщень елементів суттєво залежить від стартового розміщення ключів в послідовності.

Однак при початково-впорядкованому масиві не слід чекати максимальної ефективності. Адже об'єм перестановок в цьому випадку є досить великим під час просіювання "важких" елементів після побудови піраміди. Фактично на кожному етапі такого просіювання виконується log(K) перестановок плюс ще N-1 обмін перед просіюванням, де K - кількість елементів в піраміді, в якій проводиться просіювання. Таким чином, в цьому випадку

.

Тому можна вважати, що розглядуваний метод як і по порівняннях так і по перестановках має ефективність порядку O(N*log(N)+N).

2.5 Порівняльна характеристика швидкодії деяких швидких алгоритмів сортування

Щоб порівняти швидкодію певних алгоритмів сортування, зокрема Quick_Sort, Heap_Sort, Shell_Sort, ми створили одновимірний масив із елементів n=50000, типу integer. При цьому розглядалися різні варіанти масиву А(n). А саме, коли вихідний масив А(n) вже є відсортований за зростанням (за спаданням), коли всі члени масиву А(n) рівні, а також, коли елементи масиву генеруються випадковим чином. За отриманими результатами ми подували таблицю, яка дає змогу проаналізувати дані, і виявити кращі алгоритми сортування у різних випадках.

Алгоритм сортування

Сортування відсортованого масиву по зростанню (мс)

Сортування по зростанню відсортованого масиву по спаданню (мс)

Сортування масиву, всі елементи однакові (мс)

Сортування масиву генерованого випадковим чином (мс)

1

Quick_Sort

17000

11000

14

25

2

Heap_Sort

40

40

8

55

3

Shell_Sort

40

50

46

77

Висновки

Отже, ми розглянули як працюють швидкі алгоритми сортування іь спробували визначити їх складність.

Застосування того чи іншого алгоритму сортування для вирішення конкретної задачі є досить складною проблемою, вирішення якої потребує не лише досконалого володіння саме цим алгоритмом, але й всебічного розглядання того чи іншого алгоритму, тобто визначення усіх його переваг і недоліків.

Звичайно, необхідність застосування саме швидких алгоритмів сортування очевидна. Адже прості алгоритми сортування не дають бажаної ефективності в роботі програми. Але завжди треба пам'ятати й про те, що кожний швидкий алгоритм сортування поряд із своїми перевагами може містити і деякі недоліки.

Так, алгоритм сортування деревом, хоча й працює однаково на всіх входах (так, що його складність в гіршому випадку співпадає зі складністю в середньому), але цей алгоритм має і досить суттєвий недолік: для нього потрібна додаткова пам'ять розміром 2n-1.

Розглядаючи такий швидкий алгоритм сортування, як пірамідальне сортування, можна зазначити, що цей алгоритм ефективніший ніж попередній, адже він сортує "на місці" , тобто він не потребує додаткових масивів. Крім того, цей алгоритм (" з точністю до мультиплікативної константи" (4,74)) оптимальний: його складність співпадає з нижньою оцінкою задачі, тобто за критеріями C(n) та M(n) він має складність O(n log2 n), але містить складний елемент в умові. Тобто, в умові A[left] має бути строго менше ніж x , а A[right] - строго більше за x. Якщо ж замість "строго більше" та "строго менше" поставити знаки, що позначають "більше, або дорівнює" та "менше, або дорівнює", то індекси left і right пробіжать увесь масив і побіжать далі. Вийти з цієї ситуації можна було б шляхом ускладнення умов продовження перегляду, але це б погіршило ефективність програми.

В нашій роботі ми розглянули деякі швидкі алгоритми сортування та їх реалізацію мовою Pascal, виконуючи курсову роботу ми реалізували програмно не лише використання швидких методів сортування, а і прямих, дослідили не лише переваги таких алгоритмів, ефективність їх використання, але й визначили деякі недоліки окремих алгоритмів, що заважають вживати їх для вирішення першої ліпшої задачі сортування. Програма, в якій міститься реалізація та демонстрація наявних прямих методів сортування називається Prjami.pas, а швидкі - Shvud.pas.

Отже, головною задачею, яку має вирішити людина, яка повинна розв'язати задачу сортування - це визначення як позитивних, так і усіх негативних характеристик різних алгоритмів сортування, передбачення кінцевого результату. До того ж , треба враховувати головне - чи , можливо, цю задачу задовольнить один з класичних простих алгоритмів сортування.

Література

1. Абрамов С. А., Зима Е. В. Начала программирования на языке Pascal. - М.: Наука, 1987.

2. Абрамов В. Г. Введение в язык Pascal: Учебное пособие для студентов вузов по специальности Прикладная математика. - М.: Наука, 1988.

3. Власик А.П. Практикум з програмування в середовищі Turbo Pascal. Ч 1.- Рівне: НУВГП, 2005. - 179 с.

4. Джонс Ж., Харроу К. Решение задач в системе Турбо-Паскаль/ Перевод с английского Улановой, Широкого. - М.: Финансы и статистика, 1991.

5. Зуев Е. А. Язык программирования Турбо Паскаль 6.0, 7.0. - М.: Радио и связь, 1993.

6. Кнут Д.Э. Искуство програмирования, том 3. Поиск и сортировка, 3-е изд.: Пер. с англ.: Уч. Пос. - М.:Издательский дом "Вильямс", 2000. - 750 с.

7. Культин Н. Б. Программирование в TurboPascal 7.0 и Delphi. - Санкт- петербург,1999.

8. Львов М. С., Співаковський О. В. Основи алгоритмізації та програмування. Херсон, 1997.

9. Перминов О. Н. Программирование на языке Паскаль. - М.: Радио и связь, 1988.

10. Перминов О. Н. Язык программирования Pascal. - М.: Радио и свіязь,1989.

11. Турбо Паскаль 7.0 Издание 10-е стереотипное. - Санкт-Петербург: "Печатный Двор", 1999.

12. Фаронов В. В. TurboPascal 7.0 . Начальный курс. - М.: "Нолидж", 2000.

13. Turbo Pascal - Издательская група К.: ВНV, 2000.

Страницы: 1, 2, 3, 4



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.