на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Разработка устройства кодирования-декодирования 32-х разрядных слов методом Хемминга
p align="left">1.2 Код CRC

Методы обнаружения ошибок предназначены для выявления повреждений со общений при их передаче по зашумленным каналам (вносящих эти ошибки). Для этого передающее устройство создает некоторое число, называемое контрольной суммой и являющееся функцией сообщения, и добавляет его к этому сообщению. Приемное устройство, используя тот же самый алгоритм, рассчитывает контрольную сумму принятого сообщения и сравнивает ее с переданным значением. Например, если для расчета контрольной суммы используем простое сложение байтов сообщения по модулю 256, то может возникнуть примерно следующая ситуация. (Все числа примера десятичные.)

Сообщение: 6 23 4

Сообщение с контрольной суммой: 6 23 4 33

Сообщение после передачи: 6 27 4 33

Как видно, второй байт сообщения при передаче оказался измененным с 23 на 27. Приемник может обнаружить ошибку, сравнивая переданную контрольную сумму (33) с рассчитанной им самим: 6 + 27 + 4 = 37. Если при правильной передаче сообщения окажется поврежденной сама контрольная сумма, то такое сообщение будет неверно интерпретировано, как искаженное. Однако, это не самая плохая ситуация. Более опасно, одновременное повреждение сообщения и контрольной суммы таким образом, что все сообщение можно посчитать достоверным. К сожалению, исключить такую ситуацию невозможно, и лучшее, чего можно добиться, это снизить вероятность ее появления, увеличивая количество информации в контрольной сумме (например, расширив ее с одного до 2 байт).

Ошибки иного рода возникают при сложных преобразованиях сообщения для удаления из него избыточной информации. Однако, данная статья посвящена только расчетам CRC, которые относятся к классу алгоритмов, не затрагивающих само го сообщения и лишь добавляющих в его конце контрольную сумму:

<исходное неизмененное сообщение> <контрольная сумма>

Требования сложности

Выше показано, что повреждение сообщения может быть обнаружено, используя в качестве алгоритма контроля простое суммирование байтов сообщения по модулю 256:

Сообщение: 6 23 4

Сообщение с контрольной суммой: 6 23 4 33

Сообщение после передачи: 6 27 4 33

Недостаток этого алгоритма в том, что он слишком прост. Если произойдет несколько искажений, то в 1 случае из 256 не сможем их обнаружить. Например:

Сообщение: 6 23 4

Сообщение с контрольной суммой: 6 23 4 33

Сообщение после передачи: 8 20 5 33

Для повышения надежности можно было бы изменить размер регистра с 8 битного на 16 битный (то есть суммировать по модулю 65536 вместо модуля 256), что скорее всего снизит вероятность ошибки с 1/256 до 1/65536. Хотя это и неплохая идея, однако, она имеет тот недостаток, что применяемая формула расчета не "случайна" в должной степени -- каждый суммируемый байт оказывает влияние лишь на один байт суммирующего регистра, при этом ширина самого регистра не имеет никакого значения. Например, во втором случае суммирующий регистр мог бы иметь ширину хоть мегабайт, однако ошибка все равно не была бы обнаружена. Проблема может быть решена лишь заменой простого суммирования более сложной функцией, чтобы каждый новый байт оказывал влияние на весь регистр контрольной суммы.

Таким образом, сформулировано 2 требования для формирования надежной контрольной суммы:

Ширина: Размер регистра для вычислений должен обеспечивать изначальную низкую вероятность ошибки (например, 32 байтный регистр обеспечивает вероятность ошибки 1/232).

Случайность: Необходим такой алгоритм расчета, когда каждый новый байт может оказать влияние на любые биты регистра.

Обратим внимание, что термин "контрольная сумма" изначально описывал достаточно простые суммирующие алгоритмы, однако, в настоящее время он используется в более широком смысле для обозначения сложных алгоритмов рас чета, таких как CRC. Алгоритмы CRC, которые и будем рассматривать в дальнейшем, очень хорошо удовлетворяют второму условию и, кроме того, могут быть адаптированы для работы с различной шириной контрольной суммы.

Контрольная сумма (Checksum) - Число, которое является функцией некоторого сообщения. Буквальная интерпретация данного слова указывает на то, что выполняется простое суммирование байтов сообщения, что, по видимому, и делалось в ран них реализациях расчетов. Однако, на сегодняшний момент, несмотря на использование более сложных схем, данный термин все имеет широкое применение.

Если сложение, очевидно, не пригодно для формирования эффективной контрольной суммы, то таким действием вполне может оказаться деление при условии, что делитель имеет ширину регистра контрольной суммы.

Основная идея алгоритма CRC состоит в представлении сообщения виде огромного двоичного числа, делении его на другое фиксированное двоичное число и использовании остатка этого деления в качестве контрольной суммы. Получив сообщение, приемник может выполнить аналогичное действие и сравнить полученный остаток с "контрольной суммой" (переданным остатком).

Пример:

Предположим, что сообщение состоит из 2 байт (6, 23), как и в предыдущем примере. Их можно рассматривать, как шестнадцатеричное число 0167h, или как двоичное число 0000 0110 0001 0111. Предположим, что ширина регистра контрольной суммы составляет 1 байт, а в качестве делителя используется 1001, тогда сама контрольная сумма будет равна остатку от деления 0000 0110 0001 0111 на 1001. Хотя в данной ситуации деление может быть выполнено с использованием стандартных 32 битных регистров, в общем случае это не верно. Поэтому воспользуемся делением "в столбик". Только на этот раз, оно будет выполняться в двоичной системе счисления:

...0000010101101 = 00AD = 173 =

----_---_---_---_

9= 1001 ) 0000011000010111 = 0617 = 1559 =

0000.,,....,.,,,

----.,,....,.,,,

0000,,....,.,,,

0000,,....,.,,,

----,,....,.,,,

0001,....,.,,,

0000,....,.,,,

----,....,.,,,

0011....,.,,,

0000....,.,,,

----....,.,,,

0110...,.,,,

0000...,.,,,

----...,.,,,

1100..,.,,,

1001..,.,,,

====..,.,,,

0110.,.,,,

0000.,.,,,

----.,.,,,

1100,.,,,

1001,.,,,

====,.,,,

0111.,,,

0000.,,,

----.,,,

1110,,,

1001,,,

====,,,

1011,,

1001,,

====,,

0101,

0000,

----

1011

1001

====

0010 = 02 = 2

В десятичном виде это будет звучать так: "частное от деления 1559 на 9 равно 173 и 2 в остатке".

Хотя влияние каждого бита исходного сообщения на частное не столь существенно, однако 4 битный остаток во время вычислений может радикально измениться, и чем больше байтов имеется в исходной сообщении (в делимом), тем сильнее меняется каждый раз величина остатка. Вот почему деление оказывается применимым там, где обычное сложение работать отказывается.

В нашем случае передача сообщения вместе с 4 битной контрольной суммой выглядела бы (в шестнадцатеричном виде) следующим образом: 06172, где 0617 - это само сообщение, а 2 - контрольная сумма. Приемник, получив сообщение, мог бы выполнить аналогичное деление и проверить, равен ли остаток переданному значению (2).

Хотя арифметическое деление, описанное выше, очень похоже на схему расчета контрольной суммы, называемой CRC, сам же алгоритм CRC несколько более сложен, и, чтобы понять его, необходимо окунуться в теорию целых чисел.

Полином (Polynomial) - Полином является делителем CRC алгоритма.

Все CRC алгоритмы основаны на полиномиальных вычислениях, и для любого алгоритма CRC можно указать, какой полином он использует.

Вместо представления делителя, делимого (сообщения), частного и остатка в виде положительных целых чисел можно представить их в виде полиномов с двоичными коэффициентами или в виде строки бит, каждый из которых является коэффициентом полинома. Например, десятичное число 23 в шестнадцатеричной системе счисления имеет вид 17, а в двоичном - 10111, что совпадает с полиномом:

1*x^4 + 0*x^3 + 1*x^2 + 1*x^1 + 1*x^0

или, упрощенно:

x^4 + x^2 + x^1 + x^0

И сообщение, и делитель могут быть представлены в виде полиномов, с которыми как и раньше можно выполнять любые арифметические действия. Предположим, что хотим перемножить, например, 1101 и 1011. Это можно выполнить, как умножение полиномов:

(x^3 + x^2 + x^0)(x^3 + x^1 + x^0)

= (x^6 + x^4 + x^3

+ x^5 + x^3 + x^2

+ x^3 + x^1 + x^0) = x^6 + x^5 + x^4 + 3*x^3 + x^2 + x^1 + x^0

Теперь для получения правильного ответа необходимо указать, что Х равен 2, и выполнить перенос бита от члена 3*x^3.

В результате получим:

x^7 + x^3 + x^2 + x^1 + x^0

Все это очень похоже на обычную арифметику, с той лишь разницей, что основание у нас лишь предполагается, а не строго задано. Если "X" неизвестен, то не можем выполнить перенос. Неизвестно, что 3*x^3 - это то же самое, что и x^4 + x^3, так как не знаем, что X=2. В полиномиальной арифметике связи между коэффициентами не установлены, и, поэтому, коэффициенты при каждом члене полинома становятся строго типизированными -- коэффициент при x^2 имеет иной тип, чем при x^3.

Если коэффициенты каждого члена полинома совершенно изолированы друг от друга, то можно работать с любыми видами полиномиальной арифметики, просто меняя правила, по которым коэффициенты работают. Одна из таких схем для нас чрезвычайно интересна, а именно, когда коэффициенты складываются по модулю 2 без переноса - то есть коэффициенты могут иметь значения лишь 0 или 1, перенос не учитывается. Это называется "полиномиальная арифметика по модулю 2".

Возвращаясь к предыдущему примеру:

(x^3 + x^2 + x^0)(x^3 + x^1 + x^0)

= (x^6 + x^4 + x^3

+ x^5 + x^3 + x^2

+ x^3 + x^1 + x^0)

= x^6 + x^5 + x^4 + 3*x^3 + x^2 + x^1 + x^0

По правилам обычной арифметики, коэффициент члена 3*x^3 распределяется по другим членам полинома, используя механизм переноса и предполагая, что X = 2. В "полиномиальной арифметике по модулю 2" не известно, чему равен "X", переносов здесь не существует, а все коэффициенты рассчитываются по модулю 2. В результате получаем:

= x^6 + x^5 + x^4 + x^3 + x^2 + x^1 + x^0

Таким образом, полиномиальная арифметика по модулю 2 - это фактически двоичная арифметика по модулю 2 без учета переносов. Хотя полиномы имеют удобные математические средства для анализа CRC алгоритмов и алгоритмов коррекции ошибок, для упрощения дальнейшего обсуждения они будут заменены, на непосредственные арифметические действия в системе, с которой они изоморфны, а именно в системе двоичной арифметики без переносов.

Двоичная арифметика без учета переносов

Оставим полиномы вне поля нашего внимания, и сфокусируем его на обычной арифметике, так как действия, выполняемые во время вычисления CRC, являются арифметическими операциями без учета переносов. Эта арифметическая система является ключевой частью расчетов CRC.

Сложение двух чисел в CRC арифметике полностью аналогично обычному арифметическому действию за исключением отсутствия переносов из разряда в разряд. Это означает, что каждая пара битов определяет результат своего разряда вне зависимости от результатов других пар. Например:

10011011

+11001010

--------

01010001

Для каждой пары битов возможны 4 варианта:

0+0=0

0+1=1

1+0=1

1+1=0 ( )

То же самое справедливо и для вычитания:

10011011

-11001010

--------

01010001

когда имеются также 4 возможные комбинации:

0-0=0

0-1=1 ( )

1-0=1

1-1=0

Фактически, как операция сложения, так и операция вычитания в CRC арифметике идентичны операции "Исключающее ИЛИ" (eXclusive OR - XOR), что позволяет заменить 2 операции первого уровня (сложение и вычитание) одним действием, которое, одновременно, оказывается инверсным самому себе. Очень удобное свойство такой арифметики.

Сгруппировав сложение и вычитание в одно единое действие, CRC арифметика исключает из поля своего внимания все величины, лежащие за пределами самого старшего своего бита. Хотя совершенно ясно, что значение 1010 больше, чем 10, это оказывается не так, когда говорят, что 1010 должно быть больше, чем 1001.

Чтобы понять почему, попытайтесь получить из 1010 значение 1001, отняв или прибавив к нему одну и ту же величину:

1001 = 1010 + 0011

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.