на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Сканеры: виды, устройство, принципы работы
p align="left">Также использует данные, полученные прямо в процессе сканирования. С ее помощью считывается с оригинала и «удаляется» из оцифрованного изображения шум, вызванный зерном пленки. Зерно фотопленки - это группы кристаллов галогенида серебра, из которых состоит светочувствительная фотоэмульсия. Зерно пленки доступно разрешению слайд-сканера, легко воспроизводится на мониторе при просмотре изображения и неизбежно приводит к уменьшению детализации изображения и ощутимому ухудшению его качества. Поэтому возможность получить резкое и четкое изображение без следов зернистости пленки не менее полезна, чем восстановление истинных цветов и оттенков.

Технология Digital ROC и Digital GEM уже в 2001 году были воплощены в слайд-сканере Dimage Scan Multi II от Minolta.

2.4 Digital ICE3

Комбинация этих трех технологий. Слайд-сканер с интегрированными тремя технологиями автоматически обеспечивает превосходный, качественный результат сканирования и у профессионалов, и у любителей. Эти три технологии планируется реализовывать не только в сканерах, но и в цветных копирах, устройствах печати фотокопий и других цифровых устройствах ввода/вывода, где качество изображения и реальность цветов для конечного потребителя первостепенны. В планшетных сканерах можно реализовывать одновременно две технологии - Digital ROC и Digital ICE. Конечно, сканирование с автоматическими улучшениями Digital ROC, Digital GEM и Digital ICE занимает и гораздо больше времени, чем простое сканирование. Но что эти лишние минуты по сравнению с теми часами, которые вы затратили на последующую коррекцию изображения. Однако сканирование с такими функциями (даже с одной, а с двумя-тремя и подавно) предъявляет высокие требования к системным ресурсам: к объему оперативной памяти, свободному месту на жестком диске и т.п.

3. Сравнение новой технологии CIS (Contact Image Sensor) с традиционной CCD (Charge Couple Device)

В большинстве современных сканеров для получения данных об изображении применяется приемный элемент, называемый CCD (Charge-Coupled Device, прибор с зарядовой связью - ПЗС). Эта технология известна уже много лет и используется также в аппаратах факсимильной связи, видеокамерах и других устройствах. В некоторых новых сканерах начинает использоваться другой тип приемного элемента, называемый CIS (Contact Image Sensor). Этот элемент состоит из линейки датчиков, непосредственно воспринимающих световой поток от оригинала, причем линейка имеет ширину, равную ширине рабочей области сканера, а оптическая система - зеркала, призма, обьектив - полностью отсутствует.

Настоящий раздел дипломной работы сравнивает преимущества двух технологий и приводит примеры отсканированных изображений.

Таблица 1. CCD и CIS - сравнительная таблица.

Charge-Coupled Device (CCD)

Contact Image Sensor (CIS)

(1)

Лучшая глубина резкости

Глубина резкости CCD сканеров в 10 раз больше (+/-3 мм), чем CIS сканеров (+/-0.3мм). Это означает что с CCD сканером 3х-мерные обьекты или даже книги и журналы будут отсканированы с хорошей резкостью, но при сканировании CIS сканером изображение зачастую будет размытым и нерезким.

(1)

Меньшие размеры и вес

Отсутствие оптической системы и зеркал позволяет CIS сканерам иметь меньшие тольщину и вес, чем их конкуренты с CCD-элементом.

(2)

Лучшая чувствительность к оттенкам

CCD сканеры различают уровни оттенков +/-20%, тогда как CIS сканеры определяют различия в оттенках только +/-40%. Для пользователя это означает, что передача деталей оттенков будет лучше у CCD сканеров.

(2)

Уменьшение затрат на производство

CIS-элементы заменяют целый набор компонентов сканера, уменьшая стоимость производства.

(3)

Дольше срок службы сканера

CCD сканеры обеспечивают стабильно высокое качество сканирования в течение более 10,000 часов. У существующих в настоящее время CIS сканеров наблюдается падение яркости в среднем на 30% после всего 500 часов работы.

(4)

Разрешающая способность

В настоящее время существуют профессиональные CCD сканеры с оптическим разрешением 3000 точек на дюйм. В CIS технологии оптическое разрешение в настоящее время ограничено 300 dpi.

(5)

Хорошо развитая технология

В течение многих лет были проданы миллионы сканеров и факсов с CCD элементами. CIS сканеры появились только несколько месяцев назад. И, хотя CIS элементы для факсов существуют уже много лет, только около половины производителей факсов перешли на них, несмотря на низкую цену.

3.1 Сравнение результатов сканирования при использовании CCD и CIS элементо

Все образцы были отсканированы с разрешением 300 dpi (режим RGB) при использовании установок сканирования, принятых по умолчанию. На рабочую поверхность сканеров были помещены часы и журнал, при этом дополнительного прижима образцов (кроме обеспечиваемого крышками сканеров) не производилось.

Charge-Coupled Device (CCD)

Contact Image Sensor (CIS)

Сканирование CCD элементом

Сканирование CIS элементом

Оба изображения - непосредственные результаты сканирования, уменьшенные до ширины 150 пикселей с разрешением 72ppi. Качество изображений не улучшалось ни в какой программе обработки изображений

4. Принцип ПЗС-технологии

Вскоре после того, как был изобретен транзистор и, впоследствии, планарная технология, полупроводниковые приборы заменили вакуумные либо были близки к этому почти во всех областях электроники, за исключением трех, еще долго не поддававшихся "кремнизации" - генераторные лампы для мощных передатчиков, высоковольтные приборы (кенотроны, рентгеновские трубки...) и приборы для ТВ - кинескопы и передающие трубки.

Достаточно сказать, что процессор Пентиум с его 5 миллионами транзисторов потребляет энергии меньше, чем один ламповый триггер, а о массогабаритных показателях, механической стойкости и сроке службы можно не упоминать. Ничего удивительного, что попытки создать твердотельный аналог передающей трубки - после изобретения компанией Texas Instruments планарной технологии в 1960 г. не заставили себя ждать. Все такие разработки без исключения представляли собой матрицу фоточувствительных элементов (как правило, фоторезисторов или фототранзисторов) и схемы сканирования по вертикали и горизонтали (регистры сдвига на биполярных, а позднее и полевых транзисторах). Число элементов разложения этих датчиков не превышало 256 на 256, а качество изображения с них было удручающим - как из-за низкой чувствительности, так и, в первую очередь, из-за числа дефектов, свойственных тогдашнему уровню технологии. Весьма раздражающей для глаза была и структурная неоднородность (выглядевшая как полосатость), связанная с неоднородностью выходных емкостей шин считывания разных столбцов (или строк - в зависимости от организации конкретного прибора).

Луч света забрезжил, как это часто бывает, с неожиданной стороны. В 1970 г. сотрудники фирмы Bell Laboratories У. Бойл и Дж. Смит в поисках электрического аналога схем на цилиндрических магнитных доменах предложили - и продемонстрировали экспериментально - принцип зарядовой связи. Самый первый ПЗС представлял собой аналоговый (!) регистр сдвига на 8 элементов, изготовленный по p-МОП технологии с молибденовыми затворами, а вскоре появились и двумерные матрицы. Очень быстро стало ясно, что присущее ПЗС свойство само сканирования (об этом чуть дальше) устраняет необходимость в регистрах сдвига, создававших столько проблем в предшествующих типах датчиков.

Дальнейший рывок в технологии и параметрах ПЗС был связан с появлением скрытого канала переноса (об этом тоже ниже) и применением прозрачных электродов из поликристаллического кремния, что резко повысило чувствительность приборов. Уже в середине 70-х появились первые коммерческие матрицы производства фирм Fairchild, Bell и RCA в США и Philips в Европе, совместимые с ТВ стандартом (т. е. имеющие разрешение по вертикали 476 или 576 строк - соответственно для американского или европейского стандартов разложения, и, по меньшей мере, 350 элементов разложения по горизонтали). Ну, а вскоре в Японии было налажено массовое производство недорогих ПЗС приемлемого качества для бытовой электроники - и на смену кинокамерам в массовом порядке пришли видеокамеры.

Революционное воздействие оказали ПЗС на астрономию, где их появление по степени влияния сравнимо разве что с тем, которое оказало применение в качестве средства регистрации фотопластинок вместо человеческого глаза (собственно, именно астрономия стала той первой отраслью человеческой деятельности, где фотоэмульсия уступила место кремнию). С другой стороны, и требования, предъявляемые астрономией, особенно космического базирования, к ПЗС, стимулировали развитие технологии их изготовления, и ныне приборы с числом элементов 4096 на 4096 и с квантовым выходом около 90% уже не являются экзотикой.

Ну и, наконец, микроскопия в медицине и биологии, компьютерное зрение и видеоконференции, системы ориентации космических аппаратов и считыватели штрих-кода, телефакс и сканер... - всё это тоже стало возможным и доступным благодаря ПЗС.

4.1 Устройство ПЗС-датчика

Для начала отметим, что ПЗС относятся к изделиям функциональной электроники, то есть их нельзя представить как совокупность транзисторов или же конденсаторов. Сам же принцип зарядовой связи весьма прост и основан на двух равно фундаментальных положениях: 1),одноимённые заряды отталкиваются, и 2),рыба ищет, где глубже. Для начала представим себе МОП-конденсатор (сокращение от слов металл-окисел - полупроводник). Это то, что остаётся от МОП-транзистора, если убрать из него сток и исток, то есть просто электрод, отделённый от кремния слоем диэлектрика. Для определённости будем считать, что полупроводник - p-типа, т. е. концентрация дырок в равновесных условиях много (на несколько порядков) больше, чем электронов.

Что будет, если на такой электрод (его называют затвором) подать положительный потенциал? Первый ответ, который приходит на ум, - "ничего не будет, поскольку диэлектрик не проводит электричества" - не совсем верен, ибо электрическое поле через диэлектрик проникать может. И когда электрическое поле, создаваемое затвором, проникая в кремний сквозь диэлектрик, отталкивает подвижные дырки; возникает обеднённая область - некоторый объём кремния, свободный от основных носителей. При параметрах полупроводниковых подложек, типичных для ПЗС, глубина этой области составляет около 5 мкм. Напротив, электроны, если они каким-либо образом (например, в результате фото генерации) окажутся вблизи, притянутся к затвору и будут накапливаться на границе раздела окисел-кремний непосредственно под затвором, т. е. как бы сваливаются в яму, которая совершенно официально называется потенциальной ямой (рис. 3а).

Рис. 3а Образование потенциальной ямы при приложении напряжения к затвору

При этом электроны по мере накопления в яме частично нейтрализуют электрическое поле, создаваемое в полупроводнике затвором, и, в конце концов, могут полностью его скомпенсировать. Так что всё электрическое поле будет падать только на диэлектрике, и всё вернётся в исходное состояние (так что действительно "ничего не изменилось" - почти!) - за тем исключением, что на границе раздела образуется тонкий слой электронов.

Рис. 3б Перекрытие потенциальных ям двух близко расположенных затворов. Заряд перетекает в яму, в которой потенциальная яма глубже.

Пусть теперь рядом с затвором расположен ещё один, и на него тоже подан положительный потенциал, причём больший, чем на первый (рис. 3б). Так вот, если только затворы расположены достаточно близко, их потенциальны ямы объединяются, и электроны, находящиеся в одной потенциальной яме, перемещаются в соседнюю, если её потенциал выше (т. е. если она глубже), в полном соответствии с упомянутым выше фундаментальным принципом.

Теперь уже должно быть ясно, что если мы имеем цепочку затворов, то можно, подавая на них соответствующие управляющие напряжения, передавать локализованный зарядовый пакет вдоль такой структуры.

Рис. 3в Простейший трёхфазный ПЗС-регистр. Заряд в каждой потенциальной яме разный!

Замечательное свойство ПЗС - свойство самосканирования - состоит в том, что для управления цепочкой затворов любой длины достаточно всего трёх тактовых шин. Действительно, для передачи зарядовых пакетов необходимо и достаточно трёх электродов: одного передающего, одного принимающего и одного изолирующего, разделяющего пары принимающих и передающих друг от друга, причём одноимённые электроды таких троек могут быть соединены друг с другом в единую тактовую шину, требующую лишь одного внешнего вывода (рис. 3в). Это и есть простейший трёхфазный регистр сдвига на ПЗС.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.