на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Сканеры: виды, устройство, принципы работы
p align="left">Теперь, мне кажется, настало время поговорить о достоинствах и ограничениях ПЗС вообще и данной структуры в частности. Разумеется, общие преимущества перехода от вакуумных приборов сразу к ИС высокой степени интеграции очевидны и не нуждаются в комментариях. Остановимся на менее очевидных (а для непосвящённых, возможно, и просто новых) моментах.

Прежде всего, отметим жёсткий растр. В трубках растр создавался сканирующим электронным лучом, и его геометрическое качество зависело от массы факторов - линейности напряжений развёрток, стабильности питающих напряжений, температурных эффектов и т. д. В твердотельных приборах растр задаётся с высокой точностью в процессе изготовления структуры прибора, так что геометрические искажения получаемого изображения определяются только качеством оптики. С жёсткостью растра связаны и такие достоинства, как отсутствие микрофонного эффекта (т. е. изменения параметров электровакуумного прибора из-за акустического воздействия) и нечувствительность к магнитным полям - а ведь искажения в трубках, если не принимать специальных мер, могли порой возникать даже от изменения её положения относительно магнитного поля Земли!

С жёстким растром - и вообще с тем, что это интегральная схема связано и другое преимущество ПЗС, особенно важное для профессиональных цветных камер - совмещение растров датчиков в трех матричных камерах цветного ТВ. Я напомню, как получается цветной сигнал в таких камерах (будь то на ПЗС или на трубках): световой поток от объектива с помощью специальной дихроичной призмы расщепляется на три - соответственно красный, зелёный и синий, поступающие каждый на свой датчик. Ясно, что малейшее рассогласование растров этих датчиков приводит к появлению цветовой окантовки на результирующем изображении. А теперь представьте себе, каких ухищрений стоит добиться совмещения растров для трёх электронно-лучевых приборов! Жёсткий растр и связанная с этим жёсткая привязка выходного сигнала к тактовой частоте упростила и конструкцию одно-матричных цветных камер, в которых для получения информации о цвете используется нанесение непосредственно на фоточувствительную секцию специального фильтра - мозаичного или полосового - так что каждый элемент ПЗС передаёт сигнал только одного какого-то цвета, а полный цветной сигнал получается за счёт соответствующей обработки выходного сигнала ПЗС. Ясно, что однозначная привязка сигнала каждого элемента с сетке частот упрощает эту обработку (нелинейность развёртки в трубках вынуждала формировать специальный индексный сигнал, для чего конструкция мишени трубок для одно-трубочных камер цветного ТВ сильно усложнялась).

Ещё одно достоинство - отсутствие эффекта выжигания. В трубках чрезмерно яркий свет (например, случайно попавший в поле зрения яркий источник света или, не приведи бог, Солнце), приводил к выжиганию - длительному, а иногда и необратимому изменению параметров фото катода - и изображение этого источника (причём негативное) ещё долгое время можно было наблюдать, даже не открывая объектив... Ещё один неприятный эффект, свойственный трубкам (кстати, и фоторезисторным матрицам) и полностью отсутствующий в ПЗС - инерционность. Многие, вероятно, видели хвост, тянущийся за изображением яркой лампы при панорамировании камеры. Именно так проявляется инерционность трубки - даже после исчезновения освещенности данной точки фото катода сигнал с неё не спадает мгновенно. В матрицах ПЗС, накопленный сигнальный заряд полностью выводится при переносе кадра - и к началу следующей экспозиции секция накопления как новенькая.

По сравнению с твердотельными приборами с координатной адресацией (КА) ПЗС сильно выигрывают в однородности сигнала, так как все зарядовые пакеты детектируются одним усилителем (вспомним, что в приборах с КА каждый столбец имеет свой усилитель - со своим коэффициентом усиления). Помимо одинакового для всех зарядовых пакетов коэффициента преобразования заряд-напряжение, усилитель ПЗС характеризуется и значительно меньшим по сравнению с матрицами с КА шумом (это связано с величиной ёмкости преобразования, о чём мы ещё поговорим).

И ещё одно достоинство по сравнению с конструкцией, о которой речь пойдёт ниже: вся площадь секции накопления является фоточувствительной, т. е. коэффициент заполнения (fill factor) равен 100%. Эта особенность делает приборы данной организации монополистами в астрономии и вообще везде, где идёт борьба за чувствительность.

При всей несомненной простоте, у матриц с рассмотренной организацией (они называются ПЗС с кадровым переносом) есть один существенный недостаток - собственно, сам кадровый перенос (КП). Тактовая частота, подаваемая на секции во время КП, составляет, как правило, несколько сот Кгц (редко 1-2 МГц), что связано с большой ёмкостью фаз секций (до 10 000 пФ) и тем, что сами электроды имеют распределённые параметры (RC), и тактовые импульсы при их высокой частоте могут просто не дойти до середины электрода. А раз так, то КП занимает существенное время - доли мс. Если теперь учесть, что во время КП секция накопления остаётся освещённой, то яркие участки изображения успевают дать вклад в чужой зарядовый пакет даже за то короткое время, когда он проходит через них. Так на сигнале появляется смаз - вертикальный след от ярких участков изображения размером во весь кадр. Для борьбы с ним применяются разные ухищрения. Так, в малокадровых системах (прикладные системы с низкой кадровой частотой; яркий пример, опять же, - астрономия, где время накопления составляет порой часы) используется механический затвор, или же, если есть такая возможность, просто отключают источник света. В цифровых камерах для компенсации смаза используются достаточно простые алгоритмы обработки изображения (просто запоминается отдельно картинка смаза - её можно, например, получить при нулевом времени накопления - и затем она вычитается из "суммарного" изображения).

Рис. 6б. Прибор с межстрочным переносом (МП)

Однако радикально проблема смаза решается в приборах с межстрочным переносом (МП), завоевавших доминирующее положение на рынке бытовой видеотехники. Их организация изображена на рис. 6б. В отличие от матриц с КП, функции накопления заряда и его переноса здесь разделены. Заряд из элементов накопления (это, как правило, фотодиоды - они тоже обладают ёмкостью и способны накапливать заряд!) передаётся в закрытые от света ПЗС-регистры переноса, то есть секция переноса как бы вставлена в секцию накопления. Теперь перенос зарядового рельефа всего кадра происходит за один такт, и смаз, связанный с переносом, не возникает. Чтобы побороть ещё и искажения, возникающие из-за попадания в каналы переноса носителей, генерируемых в глубине подложки (если только не применяется фильтр ИК отсечки - а в видеокамерах он всегда применяется), к матрице с МП добавляется ещё одна секция памяти с соответствующим числом элементов (рис. 6в). Смаз в такой матрице со строчно-кадровым переносом (СКП) пренебрежимо мал.

Рис. 6в. Секция памяти

По сравнению с матрицами с КП фактор заполнения в матрицах с МП или СКП примерно вдвое меньше, так как около половины площади фоточувствительной поверхности закрыто от света. Чтобы повысить эффективность сбора фотонов, используется микрорастр - массив небольших линзочек.

Рис.7. Микрорастр в ПЗС с межстрочным переносом значительно повышает эффективность сбора фотонов

Он формируется очень просто: на поверхность пластины с уже формированными структурами матрицы наносится слой оптической легкоплавкой пластмассы, из которого методом фотолитографии вырезаются изолированные квадратики, лежащие над каждым элементом. Зазор между отдельными квадратиками невелик. Затем пластина нагревается, пластмасса подплавляется и поверхность отдельных квадратиков приобретает близкую к сферической форму, фокусируя приходящий на её поверхность свет точно на фоточувствительный элемент матрицы. Получается вот что

4.1.1 Параметры и характеристики ПЗС

Перейдём рассмотрим параметры и характеристики ПЗС. Прежде всего, остановимся на их спектральных характеристиках - зависимости выходного сигнала от длины волны, или, что эквивалентно, квантовом выходе - количестве фотоэлектронов на один фотон падающего излучения.

Спектральная характеристика (СХ) ПЗС определяется, причём мультипликативно, двумя факторами - прохождение света через электродную структуру и фотогенерация, вызванная поглощением света непосредственно в полупроводнике (внутренний квантовый выход). Начнём с последнего.

Поглощение света в полупроводнике описывается коэффициентом поглощения - величиной, обратной длине, на которой интенсивность излучения падает в е раз. Далее, фотогенерацию вызывают только фотоны с энергией, превышающей ширину запрещённой зоны - около 1,2 эВ (что соответствует длине волны чуть больше 1,05 мкм - это ближний ИК диапазон). Фотоны с большей длиной волны просто не поглощаются и соответственно не дают вклада в выходной сигнал, а длина ~1,05 мкм оказывается красной границей фотоэффекта в кремнии. При уменьшении длины волны коэффициент поглощения постепенно растёт; так, при l = 1 мкм свет затухает в е раз на 100 мкм, при l = 0,7 мкм (красный цвет) - на 5 мкм, а при l = 0,5 мкм (зелено-голубой) - на 1 мкм. Что же из этого следует?

Вспомним, что глубина обеднённого слоя (глубина, на которую распространяется электрическое поле затвора вглубь полупроводника) - около 5 мкм. Ясно, что для света, который целиком поглощается внутри этого слоя (при длине волны менее примерно 0,6 мкм), внутренний квантовый выход будет почти 100%, так как происходит мгновенное разделение электронно-дырочных пар электрическим полем. Для более длинных волн значительная доля фотонов поглощается в нейтральной подложке, откуда носители могут попасть в потенциальные ямы только за счёт тепловой диффузии - на что шансов тем меньше, чем глубже родился каждый конкретный электрон. Надо ещё учесть, что сама подложка по своим свойствам неоднородна. Так, практически все западные приборы изготавливаются на эпитаксиальных подложках с толщиной эпитаксиального слоя 10-12 мкм, а российские ПЗС - на подложках с внутренним геттерированием (это специальный процесс, при котором дефекты кристаллической решётки загоняются вглубь подложки, так что поверхностный слой толщиной около 20 мкм становится свободным от дефектов). В обоих этих случаях время жизни свободных носителей вне поверхностного слоя чрезвычайно мало, и они просто не успевают попасть в потенциальные ямы. Это ещё больше снижает внутренний квантовый выход ПЗС для длинноволнового участка спектра.

Для очень коротких длин волн (менее 270 нм) энергия фотонов достаточна для генерации двух электронно-дырочных пар, так что для них внутренний квантовый выход, на первый взгляд, может превышать 100%. Увы, нет в мире совершенства, и граница раздела окисел-кремний - яркий тому пример. При коротких длинах волн коэффициент поглощения становится настолько большим, а длина поглощения настолько маленькой, что становится существенным вклад поверхностной рекомбинации, то есть только что рождённые пары успевают рекомбинировать, не успев разделиться. Так что в области коротких длин волн внутренний квантовый выход тоже падает, хотя и не до нуля.

Рис.8. Сечение трёхфазного ПЗС с электродами из поликристаллического кремния (вверху, а) и с виртуальной фазой (внизу, б). Около половины площади ячейки свободно от поликремния

Поговорим о пропускании света электродной структурой. Как можно судить по рис. 8а, где схематично изображено сечение ПЗС, свет, попадая в полупроводник, проходит через несколько слоёв с различными оптическими характеристиками, так что неизбежна его интерференция, благо, что толщина этих слоёв соизмерима с длиной волны. И действительно, СХ ПЗС довольно причудлива. Далее, поликристаллический кремний, из которого сделаны электроды, совершенно непрозрачен в области длин волн до 430-450 нм (синий и фиолетовый цвета). В итоге СХ обычного трёхфазного ПЗС с поликремниевыми затворами выглядит так, как показано на рис. 6 красной линией.

Рис. 9. Спектральные характеристики абсолютного квантового выхода: обычного ПЗС (красный), ПЗС с люминофорным покрытием (желтый), с освещением с обратной стороны подложки (зеленый) и с виртуальной фазой (синий).

Использование фотодиодов в матрицах МП и СКП значительно улучшает СХ ПЗС, особенно в коротковолновой части спектра, поскольку уходят проблемы, связанные с электродами. Именно это обстоятельство позволяет таким приборам успешно работать в вещательных и бытовых камерах цветного телевидения. В камерах прикладного и научного направления, где доминируют всё же приборы с КП, применяются совершенно другие подходы.

Самый простой - нанесение люминофора, специального вещества, прозрачного для длинных волн, но преобразующего коротковолновый свет в кванты с большей длиной волны. Этот приём позволяет расширить СХ ПЗС в синюю и УФ область спектра (на рис. 9) показано жёлтым цветом), не затрагивая, впрочем, средне- и длинноволновую часть СХ. Кроме того, в ряде применений, особенно в астрономии, требуется глубокое охлаждение приборов (о необходимости чего мы ещё поговорим), которое люминофорное покрытие не выдерживает. Второй способ, пожалуй, самый трудоёмкий и дорогой, но именно он позволяет добиться фантастических результатов. Состоит он в том, что кристалл ПЗС, уже после изготовления, утоньшается до толщины 10 мкм и менее (и это при размере кристалла в несколько сантиметров!), а свет падает на обратную сторону подложки, специальным образом обработанную. При столь тонкой подложке носители успевают добраться до потенциальных ям (напомним, что они простираются на глубину до 5 мкм), а полное отсутствие каких бы то ни было электродов гарантирует, что практически весь свет, за исключением потерь на отражение, проникает в кремний.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.