на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Макрокинетика гетерогенных каталитических реакций. Устойчивость экзотермических реакций. Выбор типа реактора и условий реализации промышленного процесса
(51)

Тогда для значения Ш (иl) в максимуме получаем соотношение:

(52)

Величина Ш в максимуме может быть получена подстановкой соотношения (52) в (51):

(54)

Чтобы выяснить дальнейший ход кривой Ш (иl) в области, соответствующей значительным внешним перепадам температуры щ, необходимо учесть, что максимально возможный внутренний разогрев И0 с ростом иП падает, и согласно формуле (48), И0>0 при иП> ИП. При этих значениях ип иl ?И0 и, пользуясь соотношениями (51) и (37), можно найти следующую зависимость Ш (иl):

(55)

В случае, когда величиной bИП нельзя пренебречь по сравнению с единицей, показатель экспоненты в формуле (54) следует заменить на ml - И) /2 [1 + bm (И - иl)]. Из формулы (54) следует, что при т 1 функция Ш (иl) резко спадает до весьма малых значений при уменьшении иl и, переходя через минимум, поднимается вдоль оси ординат при иl 1.

Таким образом, задавая значения параметра Ш, можно определить стационарные температуры в центре катализатора, пересекая график Ш (иl) прямыми Ш = const. На рис.4 изображена зависимость Ш от иl при И = 5 и Вiт = ?,20 и 10. При различных значениях параметра Ш может существовать одно, три или пять соответствующих ему значений иl и соответственно одно, три или пять стационарных решений, которым отвечают внутрикинетический режим I, внутридиффузионный II и внешнедиффузионный III режимы и два промежуточных неустойчивых решения.

Рис.4 Зависимость разогрева в центре пластины от модуля Тиле: И=5, BiT=? (a); 20 (б), 10 (в). Стрелки указывают направление скачкообразных переходов между режимами.

Переходы между режимами при изменении параметра Ш (изменении внешней температуры) зависят от относительной высоты двух максимумов на кривой Ш (иl). Для каждого И > 4,5 существует такое значение параметра Biт = Вiт*, что при Biт < Вiт* значение функции в правом максимуме, которое линейно зависит от ВiT, станет меньше значения функции в левом максимуме (см. рис.4). Оценку этого значения ВiТ можно получить, считая, что вследствие слабого влияния экспоненциального фактора в формуле (50) в области левого максимума, значение Ш в нем не зависит от Вiт и равно Шмакс. Тогда, используя (53), получаем:

(56)

Возможны следующие схемы переходов между стационарными режимами процесса при изменении температуры среды и, следовательно, параметра Ш:

Интересной особенностью переходов между режимами в рассмотренной системе, является то, что при некоторых условиях внутри-диффузионный режим, хотя и существует, по не проявляется ни при увеличении, ни при уменьшении температуры и скорости потока.

Выбор типа реакции и условий реализации промышленного процесса. Оптимальный температурный профиль

Основные положения. В любое из расчетных уравнений химического процесса входит ряд переменных: время контакта, температура потока на входе в реактор и температура теплоносителя, скорость потока, диаметр зерна катализатора и т.д., значения которых можно изменять в более или менее широких пределах. Приступая к проектированию химического реактора, необходимо выбрать значения этих переменных так, чтобы добиться наилучшего результата процесса. Число и номенклатура варьируемых переменных определяются принятым типом реактора и его схемой. Последняя также должна быть выбрана оптимальной, а этого в большинстве случаев можно добиться только путем сравнения наилучших результатов процесса, достижимых в реакторах различных типов.

Понятие "наилучшего" должно обладать количественной мерой, называемой критерием оптимальности. Любой применяемый критерий оптимальности имеет экономическую природу и определяется, во-первых, изменением состава, а следовательно, и стоимости реагирующего потока в результате процесса и, во-вторых, затратами на ведение процесса. Не все составляющие критерия оптимальности имеют одинаковое значение. Некоторые из них могут быть настолько малы, что их разумно не принимать во внимание, и в каждом конкретном случае надо решать вопрос о том, каким упрощенным вариантом критерия оптимальности надо пользоваться.

Во многих случаях упрощение критерия оптимальности компенсируется введением дополнительных условий и ограничений, которым должно удовлетворять оптимальное решение. Простейшим, чисто химическим критерием оптимальности может быть выход целевого продукта.

Задача оптимального проектирования реактора определенного типа сводится, таким образом, к разысканию максимального значения критерия оптимальности путем варьирования ряда независимых переменных, допустимые значения которых обычно ограничены технологическими пределами. Проведение процесса в рассчитанном режиме даст наилучший результат, достижимый (в реакторе данного типа) на данном катализаторе при принятых условиях и ограничениях. Сравнивая максимальные значения критерия оптимальности для реакторов различных типов, можно определить, какой тип реактора предпочтителен для осуществления данного процесса.

Рассмотрим одну из простейших и в то же время теоретически наиболее важную задачу оптимизации - определение оптимальной температуры в каждом сечении реактора идеального вытеснения. Состав смеси продуктов реакции на выходе трубчатого реактора зависит от профиля температуры по длине аппарата. Очевидно, должен существовать такой продольный температурный профиль, при котором выход целевого продукта или, в общем случае, значение принятого критерия оптимальности будет максимальным. Этот температурный профиль будет для данного процесса оптимальным. Оптимальный температурный профиль (ОТП), как правило, практически не может быть реализован, однако к нему можно приблизиться, применяя различного типа секционированные реакторы. Теоретическая роль ОТП в реакторе идеального вытеснения состоит в том, что он дает наилучшие возможные показатели, достижимые в процессе с данной кинетикой - тот идеал, к которому следует стремиться при проектировании промышленного процесса. Из аналогии между процессом в реакторе идеального вытеснения и периодическим процессом следует, что в точности тот же результат будет достигнут в периодическом реакторе с температурой, оптимальным образом изменяющейся со временем. Подчеркивая эту аналогию, будем использовать вместо продольной координаты X текущее время контакта t = Х/и (где и - линейная скорость потока в реакторе идеального вытеснения).

Верхний предел температуры. В некоторых случаях можно сразу указать характер ОТП. Если рост температуры, ускоряя процесс, увеличивает также, независимо от состава реагирующей смеси, его избирательность (или, по крайней мере, не влияет на последнюю), оптимальная температура должна быть как можно более высокой.

Так, в случае единственной необратимой реакции повышение температуры только увеличивает ее скорость, а в случае обратимой эндотермической реакции - к тому же и смещает равновесие в сторону образования целевого продукта. Если, помимо основной реакции образования целевого продукта, имеется параллельная или (и) последовательная побочная реакция с энергией активации, меньшей, чем у основной, то повышение температуры увеличивает и скорость, и избирательность процесса. Во всех этих случаях температуру процесса следует поддерживать на верхнем допустимом пределе Т*. Эта предельная температура может определяться, например, условиями скачкообразного перехода процесса в диффузионный режим, при котором, вследствие сильного разогрева активной поверхности плавится или дезактивируется катализатор или начинают идти незаметные при низкой температуре побочные реакции. Другим фактором, ограничивающим допустимую температуру процесса, может быть возникновение при повышенных температурах нежелательных реакций, идущих в объеме (вне поверхности катализатора) по цепному механизму. Предельная температура Т*-зависит от состава реагирующей смеси и поэтому может изменяться по длине реактора. Так, если необратимая сильно экзотермическая реакция первого порядка, идущая на внешней поверхности непористых частиц, должна по технологическим условиям проводиться в кинетическом режиме, то верхний предел температуры определяется критическим соотношением между параметрами м и И в точке "зажигания" реакции. Сами параметры м и И определены формулами (56), где под С? и Т? следует теперь понимать текущие значения концентрации исходного вещества и температуры потока в данном сечении реактора. Из этих формул и вида кривой зажигания следует, что максимально допустимая температура процесса повышается с уменьшением концентрации исходного вещества. Если переход в диффузионную область допустим, то после этого перехода скорость реакции практически не зависит от температуры, так что дальнейшее повышение температуры становится ненужным.

Обратимая экзотермическая реакция. В случае обратимой экзотермической реакции повышение температуры ускоряет обратную реакцию сильнее, чем прямую, так что равновесие процесса смещается в нежелательную сторону. При некоторой температуре скорость образования целевого продукта r (С, Т) проходит через максимум; эта оптимальная температура зависит от состава реагирующей смеси, уменьшаясь по мере уменьшения концентрации исходного вещества. Таким образом, вначале, пока еще не накопилось значительное количество конечного продукта, процесс выгодно вести при высокой температуре, чтобы увеличить скорость прямой реакции, а затем температуру следует снижать, чтобы, сместив равновесие в нужную сторону, добиться максимального выхода целевого продукта. Температура в каждом сечении реактора должна быть выбрана так, чтобы скорость образования целевого вещества в этом сечении была максимальной, т.е., чтобы выполнялось равенство:

?r/?T=0 (57)

Если температурная зависимость константы скорости реакции определяется уравнением Аррениуса, где Е1, Е2 - энергия активации; Z1, Z3 - предэкспоненциальные множители соответственно прямой и обратной реакции; R - газовая постоянная; f (С) и g (С) - кинетические функции прямой и обратной реакций; в случае экзотермической реакции Е2 > Е1. Концентрации исходных веществ и продуктов реакции связаны между собой линейными соотношениями; поэтому функции, выражающие зависимость скорости прямой и обратной реакций от концентраций реагентов, можно выразить через концентрацию С одного из исходных веществ, которое принимается за ключевое. Дифференцируя функцию. (58) по температуре и приравнивая производную нулю, находим оптимальную температуру процесса как функцию концентрации ключевого вещества, где h = E2 - E1 - теплота реакции.

Условие для оптимальной температуры можно привести к форме, не зависящей от кинетических функций f (С), g (С). Обозначим через Тр температуру, при которой смесь того же состава, что и в рассматриваемом сечении, находилась бы в равновесии. Так как r (Тp) = 0.

Сравнение формул (IX.3) и (IX.4) приводит к соотношению.

Конечно, переход от формулы (59) к (61) возможен только в том случае, если равновесная температура, соответствующая данному составу, существует и кинетические функции f (С), g (С) правильно описывают кинетику процесса в окрестности равновесия. Формулы (59), (61) показывают, что оптимальная температура, так же, как и температура равновесия, снижается с увеличением степени превращения. Так как при малых степенях превращения обе величины неограниченно возрастают, в сечениях, близких к входному, оптимальная температура не может быть достигнута и температуру реакции следует фиксировать на верхнем пределе Т*. В частности, в случае реакции первого порядка равновесная температура обращается в бесконечность при степени превращения з = = 1 - С/С0, равной и оптимальная - при степени превращения. Поэтому при степенях превращения з < з* повышение температуры всегда приводит к ускорению реакции.

Оптимизация стадийных cхем

Методы оптимизации стадийных схем. При проектировании реальных технологических процессов оптимальному выбору подлежит лишь ограниченное число параметров. В этом состоит существенное отличие практических задач оптимизации от задачи определения ОТП. В гибкой и эффективной реакторной схеме число варьируемых параметров Ф может, однако, быть весьма большим. Примером такой схемы является цепочка последовательно соединенных реакторов, размеры и режим работы которых должны быть выбраны оптимальным способом.

Классический метод поиска максимума функции Ф переменных состоит, как известно, в следующем. Определяются и приравниваются нулю частные производные функции по всем независимым переменным; в результате получается Ф уравнений, совместное решение которых дает искомое положение максимума. Этот метод чрезвычайно громоздок при большом Ф, а, кроме того, часто неосуществим по той причине, что аналитический вывод уравнений, определяющих точку оптимума, невозможен. Другой причиной непригодности классического метода является наличие технологических пределов варьирования независимых переменных. Может оказаться, что критерий оптимальности вовсе не имеет максимума в аналитическом смысле, а его наивысшее значение достигается на одной из границ разрешенной области, т, е. когда одна или несколько независимых переменных фиксированы на предельных значениях.

Наиболее общим, но и самым трудоемким методом расчетного поиска оптимума является "эксперимент" на математической модели. Задавшись некоторой совокупностью значений независимых переменных, всегда можно путем решения системы расчетных уравнений вычислить соответствующее значение критерия оптимальности. Чтобы найти оптимум, не обязательно испытывать все возможные сочетания значений варьируемых переменных (для этого понадобился бы фантастический объем вычислительной работы); как и при экспериментальном поиске, здесь должен быть применен' один из методов направленного движения к оптимуму типа метода крутого восхождения. Поисковые методы редко бывают эффективны. Кроме того, немаловажно, что ни один поисковый метод не может дать информации об общей структуре оптимального решения для ряда сходных задач.

Единый подход к решению широкого класса задач на разыскание экстремума функции большого конечного числа переменных дает теория динамического программирования Беллмана. Сущность этой теории покажем на примере типичной задачи оптимизации, возникающей в химической технологии. Требуется найти оптимальный режим для последовательности N реакторов (или N-стадийного аппарата), причем на каждой стадии варьируется М независимых переменных. Пронумеруем реакторы в обратном порядке, так что первый номер присваивается последнему, а N-й - первому по ходу потока реактору. Состояние потока на выходе n-го реактора обозначим индексом n; в соответствии с этим исходное состояние потока обозначается индексом N + 1 (рис.5). Состояние реагирующего потока в общем случае описывается некоторым вектором X. Вектор X часто совпадает с вектором состава С; в более сложных случаях, однако, компонентами вектора Смогут быть, помимо концентраций ключевых веществ, также и температура потока, давление и пр. Если осуществить оптимальный выбор значений всех МN варьируемых переменных, получаем максимальное значение критерия оптимальности, - зависящее только от исходного состояния потока:

maxPN=цN (XN+1) (64)

Выделим из N-стадийной последовательности первый по ходу потока реактор и в соответствии с этим разобьем критерий для N-стадийного процесса PN на два слагаемых: критерий для первого по ходу потока реактора pN и критерий для оставшейся (N - 1) - стадийной последовательности РN-1.

PN=PN+PN-1 (65)

Очевидно, что режим N-стадийной последовательности в целом может быть оптимальным только в том случае, если (N - 1) - стадийная последовательность работает в режиме, оптимальном относительно состояния потока, выходящего из N-го реактора. Действительно, сумма (65) не может стать максимальной, пока ее слагаемое РN-1 не достигнет максимального значения, зависящего только от состояния потока XN на выходе из N-го реактора. Подставляя (65) в (64) и заменяя, согласно сказанному, PN-1 на цN-1 (XN), приходим к основному функциональному уравнению

ЦN (XN+1) =max [pN+цN-1 (XN)] (66)

которое представляет собой математическое выражение принципа оптимальности, лежащего в основе теории динамического программирования и сформулированного Беллманом: "Оптимальная стратегия обладает тем свойством, что, каковы бы ни были исходное состояние и решение в начальный момент, последующие решения должны составлять оптимальную стратегию относительно состояния, получающегося в результате первого решения".

Рис 5 Цепочка последовательно соединенных реакторов

В уравнении (66) максимум достигается варьированием только параметров, управляющих процессом на первой по ходу потока стадии. Принцип оптимальности позволяет, таким образом, заменить задачу одновременного выбора оптимальных значений MN независимых переменных гораздо более простой задачей N-стадийного выбора, на каждой стадии которого оптимум достигается варьированием М переменных. Другой отличительной чертой поиска оптимума методом динамического программирования является то, что задача решается не для единственного процесса с какими-то определенными параметрами исходного состояния, как это делается при использовании метода крутого восхождения, а для совокупности процессов с различными исходными состояниями. Действительно, как результат решения получаем зависимость максимального значения критерия оптимальности от параметров исходного состояния цN (XN+1).

Уравнение (66) представляет собой соотношение, позволяющее найти максимальное значение критерия оптимальности для N-стадийной последовательности цN, если максимальное значение критерия для (N - 1) - стадийной последовательности цN-1 уже известно. Этот факт и определяет процедуру поиска оптимума методом динамического программирования.

Так как выбор оптимальных условий для реакторов, стоящих в начале последовательности, должен осуществляться с учетом влияния работы этих реакторов на процесс в последующих аппаратах, а обратное влияние отсутствует, расчет N-стадийной последовательности следует начинать с расчета реактора, последнего походу потока, и вести, оптимизируя цепочки реакторов со все большим числом членов, подключая к этой цепочке реакторы, все более удаленные от конца последовательности. Начинаем с "последовательности", содержащей ноль реакторов. В такой "последовательности", разумеется, никаких превращений не происходит и максимальное значение критерия оптимальности ц0 (X1) тождественно равно нулю. Далее рассматриваем последовательность, состоящую из одного реактора. Подставляя в (66) N = 1 и ц0 = 0, получаем:

ц1 (X2) =max p1 (67)

Вектор Х2 описывает состояние потока, выходящего из реактора 2, и потому пока неизвестен; поэтому приходится определять оптимальные значения варьируемых параметров и соответствующие им максимальные значения критерия оптимальности ц1 (X2) для некоторой более или менее широкой совокупности исходных составов и табулировать полученные результаты. После этого можно перейти к расчету двухстадийной последовательности. Пользуясь принципом оптимальности (66), находим оптимальные значения параметров, управляющих процессом в реакторе 2. Варьируя эти параметры, меняем состояние потока Х2 на выходе из реактора 2; при этом изменяются как величина р2 (критерий для реактора 2), так и уже вычисленное максимальное значение критерия оптимальности ц1 (Х2) для реактора 1. Максимизируется сумма этих величин; для реактора 2 оптимальный режим определяется, таким образом, с учетом не только "локальной пользы", но и влияния работы этого реактора на дальнейший ход процесса. После того как вычислена функция ц2 (X3) (в определенной области значений исходных состояний X3), можно приступать к расчету трехстадийной последовательности и т.д., вплоть до любого N.

Описанная общая схема метода динамического программирования, впервые примененная к расчету химических реакторов Арисом, является универсальной, но содержит два неприятных момента. Первый из них - разыскание максимума в уравнении (66), выполняемое на каждой стадии. Здесь можно воспользоваться поисковым методом крутого восхождения, что не вызовет больших затруднений, так как поиск ведется только по малому числу М варьируемых переменных. Второй, еще более неприятный момент - необходимость вычислять на каждой стадии: максимальные значения критерия оптимальности как функции параметров исходного состояния и табулировать вычисленные величины. Эта чрезвычайно трудоемкая задача сильно ограничивает возможности практического применения общей схемы метода динамического программирования и делает ее подчас менее эффективной, чем поисковый метод крутого восхождения. Оба метода являются но своему характеру типично машинными, так как связаны с многократным использованием одних и тех же расчетных формул и уравнений, т.е. многократным повторением относительно простой программы. Вопрос о том, какой из методов рационально применить при расчете, должен решаться в зависимости от конкретных условий задачи. Заранее можно сказать лишь то, что преимущества метода динамического программирования будут сказываться при увеличении числа стадий и при большей неопределенности исходного состояния потока. Рост числа компонентов вектора состояния X, затрудняя задачу табулирования, делает предпочтительным применением метода крутого восхождения.

От недостатков общей схемы метода динамического программирования можно, однако, в значительной мере избавиться, используя аналитический метод поиска оптимума на каждой стадии. Именно этот способ будет применен к решению задач оптимизации цепочек реакторов, рассматриваемых ниже. Отметим, что основные расчетные формулы, которые получим, могут быть выведены не только с помощью метода динамического программирования, но и на основе дискретного варианта принципа максимума Понтрягина или классических вариационных методов.

Список используемой литературы

1. Иоффе И.И., Письмен Л.М. Инженерная химия гетерогенного катализа. Изд-во "Химия", Л., 1972, стр.464, табл.8, рис 102.

Страницы: 1, 2, 3



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.