на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Моделирование парожидкостного равновесия в четырехкомпонентной смеси ацетон–толуол–н-бутанол–диметилформамид

Моделирование парожидкостного равновесия в четырехкомпонентной смеси ацетон–толуол–н-бутанол–диметилформамид

2

Оглавление

Введение

1. Литературный обзор

Термодинамико-топологический анализ структур диаграмм фазового равновесия

Закономерности векторного поля нод и скалярного поля равновесных температур. Уравнение их взаимосвязи

Нелокальные закономерности диаграмм фазового равновесия жидкость-пар

Единичные -многообразия

Складки на скалярных полях равновесных температур кипения двухфазных многокомпонентных смесей

Экстрактивная ректификация как способ разделения многокомпонентных смесей

Математическое моделирование фазовых равновесий

Постановка задачи исследования

2. Расчетно-аналитическая часть

Число степеней свободы при изменении состава вдоль складок на скалярных полях равновесных температур двухфазных четырехкомпонентных смесей

Систематический анализ складок на поверхности равновесных температур четырехкомпонентных смесей

Выбор объекта и метода исследования

3. Проверка смеси ацетон-толуол-н-бутанол-диметилформамид по правилам азеотропии

4. Моделирование парожидкостного равновесия в четырехкомпонентной смеси ацетон-толуол-н-бутанол-диметилформамид

Система ацетон-толуол-н-бутанол

Система толуол-н-бутанол-диметилформамид

Система ацетон-н-бутанол-диметилформамид

Система ацетон-толуол-диметилформамид

Система ацетон-толуол-н-бутанол-диметилформамид

5. Обсуждение результатов

Выводы

Список литературы

Приложение

Приложение I

Приложение II

Приложение II-a

Приложение III

Приложение IV

Приложение V

Приложение VI

Введение

Для разделения азеотропных смесей в технологии основного органического и нефтехимического синтеза широкое распространение получили ректификационные методы. Создание научно обоснованных схем разделения сложных многокомпонентных смесей является неотъемлемой частью решения таких стратегически важных задач химической технологии, как экологическая безопасность, ресурсосбережение и повышение качества органических продуктов. В основе синтеза технологической схемы разделения многокомпонентных азеотропных смесей лежит термодинамико-топологический анализ структур диаграмм гетерогенного равновесия, помогающий выявить все возможные ограничения на выделение продуктов требуемого качества и определить предельные возможности процесса разделения.

Основной характеристикой диаграммы фазового равновесия разделяемой смеси является наличие особых точек, к которым относятся точки азеотропов и чистых компонентов. Наличие этих точек порождает сепаратрические многообразия, обусловленные векторным полем нод и складки на скалярных полях равновесных температур. Особенности поведения скалярных стационарных полей температуры имеют практическое значение. Они в определенной степени объясняют ход траектории процесса экстрактивной ректификации смесей в присутствии разделяющего агента, которая проходит через минимум или максимум температуры.

В данной работе на примере системы ацетон-толуол-н-бутанол-диметилформамид был изучен ход поверхности складки на скалярном поле равновесных температур и едничной -поверхности. Данная четырехкомпонентная система является смесью растворителей производства термостабилизатора стабилина-9.

В качестве метода исследования выбран вычислительный эксперимент с использованием проблемно-ориентированного комплекса "CHEMCAD 5.2.0". Для моделирования парожидкостного равновесия системы при давлении 760 мм рт. ст. использовалось уравнение Вильсона. Получена полная математическая модель парожидкостного равновесия системы ацетон-толуол-н-бутанол-диметилформамид. В концентрационном тетраэдре построены изотермо-изобарические поверхности, поверхность складки на скалярном поле равновесных температур и едничная -поверхность.

Работа выполнена на кафедре химии и технологии основного органического синтеза Московской государственной академии тонкой химической технологии имени М.В. Ломоносова.

1. Литературный обзор

1.1 Термодинамико-топологический анализ структур диаграмм фазового равновесия

Для технологий получения различных продуктов основного органического и нефтехимического синтеза характерны крупнотоннажность производства, широкий ассортимент получающихся веществ, которые используются в том числе в дальнейших синтезах, высокие требования к качеству получаемых продуктов. Поэтому при разработке технологии большая роль принадлежит блоку разделения реакционной смеси.

В производствах основного органического и нефтехимического синтеза применяются практически все известные методы разделения многокомпонентных смесей на чистые компоненты или фракции, имеющие товарную ценность. Это обусловлено постоянным расширением номенклатуры продуктов промышленного органического синтеза, широким диапазоном свойств синтезируемых веществ и повышением требований к их чистоте. Однако одним из основных процессов разделения многокомпонентных жидких смесей является ректификация, так как данный процесс отвечает специфике рассматриваемой отрасли промышленности.

Блок разделения является самым энергоемким. Энергозатраты на разделение зависят от технологической схемы разделения, а выбор той или иной схемы определяется физико-химическими и химическими свойствами как отдельных компонентов, так и разделяемых смесей в целом. На различных стадиях разделения смесей любой сложности выделяются фракции, содержащие разное число компонентов, которые, в свою очередь, также подвергаются разделению. В связи с этим возникает необходимость в исследовании физико-химических свойств всех смесей, составляющих первоначальную сложную смесь.

Синтез технологической схемы разделения многокомпонентной азеотропной системы - сложная многоуровневая задача. Первым этапом ее решения является метод термодинамико-топологического анализа (ТТА) структур диаграмм фазового равновесия. Этот метод впервые был предложен Серафимовым Л.А. [1] и рассмотрен в [3-6]. ТТА базируется на теоремах о локальных и нелокальных закономерностях структур диаграмм фазового равновесия, то есть включает в себя закономерности соотношения неподвижных стационарных точек векторных полей нод и особых точек скалярных полей различных свойств, обусловленных физико-химическими свойствами разделяемой смеси. При ТТА выявляются все возможные ограничения на те или иные варианты разделения данной смеси.

1.2 Закономерности векторного поля нод и скалярного поля равновесных температур. Уравнение их взаимосвязи

Фазовое равновесие жидкость-пар многокомпонентных смесей можно рассматривать в диаграммах, отражающих зависимости скалярных свойств от вектора состава, и в диаграммах, отражающих закономерности векторного поля нод жидкость-пар.

Рассмотрим закономерности векторного поля нод.

Представим фазовое равновесие некоторой многокомпонентной смеси в общем виде как функцию отображения множества (т.е. симплекса) составов одной фазы в множество (т.е. симплекс) составов другой фазы :

, (1.1)

где означает, что каждому составу первой фазы , который характеризуется набором концентраций компонентов , ставится в соответствие термодинамически равновесный ему состав второй фазы , который характеризуется своим набором концентраций .

Данное соответствие обеспечивается для бинарной смеси построением кривой равновесия жидкость-пар. Для многокомпонентной смеси такое построение в принципе невозможно, так как состав каждой из фаз имеет уже не скалярную, а векторную природу.

Основой, позволяющей осуществить различные процессы разделения, является то, что в общем случае составы равновесных фаз различаются. Степень этого различия в бинарных смесях определяется степенью удаления кривой фазового равновесия от диагонали в диаграмме . Пример кривых фазового равновесия жидкость-пар для бинарных зеотропных и азеотропных смесей приведен на рис. 1.1.

1

2

3

Рис. 1.1. Кривые фазового равновесия жидкость-пар бинарных зеотропных (1) и азеотропных смесей: с минимумом (2) и максимумом (3) температуры кипения.

Для многокомпонентных смесей, совместив концентрационный симплекс одной фазы на концентрационный симплекс другой, соединим равновесные фазы некоторыми отрезками, указанная степень отличия будет определяться длиной каждого отрезка. Отрезки такого типа называются равновесными нодами (например, нода жидкость-пар, нода жидкость-жидкость).

С учетом того, что энтропия жидкой фазы (1) меньше, чем энтропия паровой фазы (2), будем считать, что вектор ноды будет направлен от состава жидкости к составу пара, и наоборот. Таким образом, нода - это некоторый вектор, получаемый как разность состава фаз:

, (1.2)

Противоположно направленный вектор называется ренодой.

(1.3)

Очевидно, что:

(1.4)

Совокупность нод образует в совмещенном концентрационном симплексе некоторое векторное поле, покрывающее весь симплекс или его часть. Данное векторное поле, которое является стационарным, то есть не зависит от времени, является геометрическим образом, отражающим физико-химическую природу рассматриваемой системы. На рис. 1.2 приведены векторные поля нод жидкость-пар для трехкомпонентных смесей.

Точки, в которых длина вектора ноды равна нулю, а направление его неопределенно, называются неподвижными точками функции отображения или особыми точками диаграммы фазового равновесия. К таким точкам относятся, например, в случае фазового равновесия жидкость-пар точки, соответствующие чистым компонентам, и точки, соответствующие бинарным, тройным, четверным и другим азеотропам. В этих точках составы равновесных фаз равны друг другу, а для случая азеотропов в соответствии с законом Гиббса-Коновалова наблюдается экстремум температуры (при закрепленном давлении) или давления (при закрепленной температуре) [2].

3.0.0-1 3.1.0-1а 3.1.0-1б 3.1.0-2

3.1.1-1а 3.1.1-1б 3.1.1-2 3.2.0-1

3.2.0-2а 3.2.0-2б 3.2.0-2в 3.2.1-1

3.2.1-2а 3.2.1-2б 3.2.1-3а 3.2.1-3б

3.3.0-1а 3.3.0-1б 3.3.0-2 3.3.1-1а

3.3.1-1б 3.3.1-1в 3.3.1-2 3.3.1-3а

3.3.1-3б 3.3.1-4

Рис. 1.2. Векторные поля нод жидкость-пар для диаграмм различных классов и видов.

Различают несколько типов особых точек, каждому из которых соответствует определенный ход дистилляционных линий. Например, для случая трехкомпонентных смесей в случае узловых точек все траектории сходятся в особой точке (устойчивый узел) или выходят из нее (неустойчивый узел). В случае седел - часть траекторий сходятся к особой точке, часть - выходят из нее и часть траекторий имеют в окрестности особой точки гиперболический ход, сначала приближаясь к ней, а потом удаляясь от нее. На рис. 1.3 показан ход дистилляционных линий в окрестностях особых точек различных типов.

(а) (б) (в)

Рис. 1.3. Особые точки траектории дистилляции в трехкомпонентных системах:

(а) - неустойчивый узел; (б) - устойчивый узел; (в) - седло.

Таковы закономерности векторного поля равновесных нод жидкость-пар. Далее рассмотрим закономерности скалярного поля равновесных температур.

Фазовое равновесие жидкость-пар многокомпонентных смесей можно рассматривать в диаграммах, отражающих зависимости скалярных свойств от вектора состава. Например, диаграмма равновесия может быть представлена полем равновесных температур кипения жидкой фазы системы при заданном давлении. На диаграммах состав-свойство для n-компонентной двухфазной системы любое свойство, выраженное некоторой скалярной величиной, не зависящей от времени, индуцирует над концентрационным симплексом непрерывное стационарное скалярное поле, структура которого усложняется с увеличением компонентности системы. Для трехкомпонентной системы диаграмма равновесия характеризуется некоторыми линиями, называемыми изотермоизобарами. Для четырехкомпонентных систем изотермоизобары являются уже некоторыми поверхностями и т.д. Скалярное стационарное поле равновесных температур может быть представлено и в векторном виде с помощью вектора-градиента. Этот вектор всегда направлен в сторону наибольшего возрастания поля (в данном случае поля температур) ортогонально к многообразию уровня. Вектор-градиент характеризуется набором частных производных величины свойства (температуры) по концентрациям компонентов:

Страницы: 1, 2, 3, 4



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.