на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Моделирование парожидкостного равновесия в четырехкомпонентной смеси ацетон–толуол–н-бутанол–диметилформамид
p align="center">1.7 Математическое моделирование фазовых равновесий

В настоящее время математическое моделирование является перспективным способом для анализа особенностей фазового равновесия и возможностей разделения многокомпонентных систем. Очевидным является многообразие принципов и методов оценки различных аспектов фазового равновесия. Лишь в очень редких случаях какой-либо один метод во всех отношениях превосходит другие. Это во многом затрудняет решение конкретных вопросов. Тем не менее, можно привести ряд рекомендаций, руководствуясь которыми можно получить достаточно точные результаты. Кроме того, на практике следует исходить из имеющегося опыта и аналогий.

Из множества уравнений состояния для корреляции коэффициентов активности с составом системы и до некоторой степени с температурой некоторые из них имеют более или менее разработанное теоретическое обоснование, другие являются чисто эмпирическими.

Математическое моделирование фазового равновесия жидкость-пар многокомпонентных смесей было описано в [35-37], моделирование равновесий жидкость-жидкость-пар - в работе [38]. В [39] авторы привели структуру концентрационного пространства и математическое описание фазового равновесия полиазеотропных смесей, а принципы его моделирования рассмотрены в [40]. Математическому моделированию фазового равновесия азеотропных смесей с учетом ассоциации в паровой фазе посвящена работа [41].

На сегодня наиболее широко применяются шесть различных видов корреляций коэффициентов активности. Рассмотрим каждый из них в отдельности.

Наиболее старым из числа применяемых на данный момент является уравнение Маргулеса. Оно было получено в 1895г. Зачастую оно дает лучшие результаты по сравнению с другими уравнениями. Маргулесом было предложено представлять и в виде степенных рядов по составу:

(1.30)

(1.31)

для двухкомпонентных систем. Как правило, применяют линейные перегруппировки этих рядов, предложенные Карлсоном и Кольборном:

(1.32)

(1.33)

в которых существует простая зависимость между параметрами и коэффициентами активности при бесконечном разбавлении:

(1.34)

(1.35)

Избыточная энергия Гиббса, соответствующая этим уравнениям, составляет:

(1.36)

Параметры уравнений (1.30) и (1.31) выводят следующим образом:

(1.37)

(1.38)

Эти параметры можно определить исходя из одной группы коэффициентов активности.

Редлихом и Кистером в 1948г. было предложено разложение в ряд, сходное по форме с уравнением (1.36):

(1.39)

Уравнение (1.37) позволяет получить трехпараметрическое уравнение для коэффициентов активности:

(1.40)

(1.41)

Уравнение ван Лаара было выведено исходя из уравнения состояния Ван-дер-Ваальса, однако в силу того, что степень соответствия параметров последнего экспериментальным данным о коэффициентах активности низка, в настоящее время уравнение ван Лаара считается чисто эмпирическим.

Зависимость избыточной энергии Гиббса от мольных долей определяется выражением:

, (1.42)

из которого получаем следующие уравнения для коэффициентов активности:

(1.43)

(1.44)

Параметры уравнения можно рассчитать исходя из одной группы данных о коэффициентах активности по уравнениям (1.45) и (1.46):

(1.45)

(1.46)

Блэком была предложена одна из линейных форм уравнения ван Лаара:

(1.47)

Позднее было предложено несколько трехпараметрических модификаций уравнения ван Лаара с несколько улучшенной точностью представления. Так, Блэк прибавил еще один член к первоначальному определению избыточной энергии Гиббса, что дало:

(1.48)

Уравнения Маргулеса, ван Лаара и связанные с ними алгебраические выражения характеризуются относительной простотой математического аппарата, легкостью оценки параметров по данным о коэффициентах активности и во многих случаях возможностью адекватного представления двухкомпонентных систем, довольно значительно отклоняющихся от идеальных, включая частично растворимые жидкие системы. Эти уравнения неприменимы к многокомпонентным системам, если отсутствуют параметры взаимодействия между тремя и более компонентами.

Уравнение Вильсона было предложено в 1964 году. При его разработке Вильсон исходил из того, что межмолекулярные взаимодействия зависят от «локальных концентраций», которые он выражал в объемных долях. Эти концентрации входят в вероятностные члены энергетического распределения Больцмана.

Теория локальных составов рассматривает раствор как упорядоченную структуру, в которой можно выделить для бинарной системы два вида молекулярных микроансамблей с определенным координационным числом. Один тип микроансамблей имеет в центре молекулу первого компонента, другой - молекулу второго компонента.

Согласно уравнению Вильсона избыточную энергию Гиббса можно представить следующим образом:

, (1.49)

где - приведенные значения параметров.

Применяя уравнение (1.50):

, (1.50)

можно найти коэффициенты активности:

(1.51)

(1.52)

(1.53)

Было предпринято несколько попыток придать выводу уравнения Вильсона более строгое теоретическое обоснование и в некотором отношении улучшить его. Так, Моулрап вывел это и ряд других уравнений, используя одну из модификаций уравнения Ван-дер-Ваальса, в которой учитывается локальный состав, при этом он исходил в каждом случае из различных допущений. Нитта и Катаяма рассматривают уравнение Вильсона как вывод теории ассоциированных растворов. Цубока и Катаяма считают его частым случаем своих выкладок, предполагающим равенство молярных объемов компонентов.

Уравнение Вильсона позволяет точно представить равновесие жидкость-пар в двух- и многокомпонентных системах с использованием только параметров бинарного взаимодействия. К тому же оно отличается простотой. Еще одна положительная особенность этого уравнения состоит в том, что в нем заранее учтен температурный эффект [42].

Для представления равновесия жидкость-жидкость нельзя непосредственно применить уравнение Вильсона [4]; использование в этих целях его модификации, уравнения Цубоки-Катаямы, дает удовлетворительные результаты, хотя последнее не было подвергнуто такой тщательной экспериментальной проверке, как другие уравнения. Уравнение Вильсона положено в основу метода групповых вкладов ASOG, используемого для получения коэффициентов активности.

В [43] авторы определяли число корней уравнения Вильсона по данным о единственной бинарной точке. Термодинамический анализ этой модели с использованием парциальных избыточных функций был проведен в [44].

Уравнение NRTL (nonrandom two-liquid) для избыточной энергии Гиббса выводят, основываясь на теории, согласно которой жидкость в двухкомпонентной системы имеет ячеистую структуру, причем эти ячейки (кластеры) состоят из молекул типа 1 и 2, каждая из которых окружена такими же молекулами, которые в свою очередь имеют аналогичное окружение, и т.д.

Итоговое уравнение для избыточной энергии Гиббса имеет вид:

(1.54)

(1.55)

(1.56)

(1.57)

, (1.58)

где - Гиббсовы энергии взаимодействий между молекулами, причем подстрочным индексом j указывают центральную молекулу;

- константа, принимаемая за характеристику заданности системы.

Коэффициенты активности получают дифференцированием:

(1.59)

(1.60)

Эти уравнения содержат три независимых параметра , и .

При помощи трехпараметрического уравнения NRTL можно, как правило, достаточно хорошо представить данные о равновесии в бинарных системах. Преимущество уравнения NRTL по сравнению с уравнениями Маргулеса и ван Лаара состоит в том, что его можно применять к многокомпонентным системам, основываясь только на бинарных параметрах, а по сравнению с уравнением Вильсона - в том, что его можно использовать для представления равновесия жидкость-жидкость. Кроме того, применительно к водным системам уравнение NRTL часто превосходит другие уравнения. Однако его недостаток состоит в том, что для каждой пары составляющих необходимы три параметра.

Термодинамический анализ модели NRTL с использованием концентрационных зависимостей избыточных функций был проведен в [45].

На концепции локальных составов основано так же предложенное Абрамсоном Д.С. и Праузницем Д.И. уравнение UNIQUAC (Universal Quasi Chemical). Используемая авторами модель предполагает, что избыточная энергия Гиббса обусловлена, во-первых, различием размеров и форм молекул (конфигурационная или комбинаторная составляющие) и, во-вторых, энергией взаимодействия молекул.

Коэффициенты активности имеют в этом случае вид:

(1.61)

(1.62)

(1.63)

(1.64)

(1.65)

(1.66)

(1.67)

, (1.68)

где - параметр площади компонента i;

- параметр объема компонента i;

- параметр взаимодействия между компонентами i и j; ;

- координационное число, ;

- комбинаторная часть коэффициента активности компонента i;

- остаточная часть коэффициента активности компонента i;

- доля площади компонента i;

- объемная доля компонента i.

Маурер и Праузниц предложили более простой способ вывода этого уравнения, они же разработали трехпараметрическую модификацию уравнения, которую, однако, невозможно распространить на многокомпонентные системы.

Уравнение UNIQUAC - наиболее сложное в алгебраическом отношении, хотя в нем используется только по два параметра для каждой пары компонентов. В уравнении учитываются сведения о площадях поверхности и объемах молекул чистых компонентов, которые можно определить по данным о структуре, в силу чего этот метод представляется особенно эффективным применительно к смесям, молекулы которых значительно различаются по размеру. Уравнение применимо для представления равновесия жидкость-пар и жидкость-жидкость в многокомпонентных системах при использовании только параметров бинарного взаимодействия и данных о чистых компонентах. Кроме того, оно учитывает влияние температуры по крайней мере для среднего диапазона.

Основными недостатками уравнения UNIQUAC - это его несколько большая алгебраическая сложность, а также часто более низкая по сравнению с некоторыми менее сложными уравнениями степень точности представления данных.

В [46] было рассмотрено моделирование коэффициентов активности от концентрации раствора уравнениями локальных составов.

Уравнение UNIQUAC положено в основу метода групповых вкладов UNIFAC (Universal functional group Activity Coefficients), предназначенного для определения коэффициентов активности по данным о структуре [47].

Модель UNIFAC была предложена Фреденслундом А., Джонсом Р.Л. Праузницем Д.И. Основная идея модели «раствора групп» заключается в использовании существующих данных по фазовому равновесию для расчета фазового равновесия систем, для которых экспериментальные данные отсутствуют.

Комбинаторная часть коэффициента активности в уравнении UNIFAC такая же, как и в уравнении UNIQUAC. Остаточная часть коэффициента подсчитывается как сумма групповых вкладов:

(1.69)

где - число групп вида k в молекуле i;

и - остаточные коэффициенты активности группы k в растворе и чистой жидкости i соответственно; суммирование производится по всем группам.

Зависимость коэффициента активности от группового состава раствора описывается соотношением, аналогичным соотношениям (1.63) и (1.66).

(1.70)

; (1.71)

, (1.72)

где - мольная доля групп m в растворе;

и - параметры, характеризующие взаимодействие каждой пары групп;

- мера энергии взаимодействия групп n и m.

Как показали расчёты, модель UNIFAC обеспечивает точность предсказания коэффициентов активности и парожидкостного равновесия, достаточную для технологических целей. В [47] отмечается, что ошибка в значении коэффициентов активности для большинства систем не превышает 10-12%. Модель позволяет также описывать равновесие между жидкими фазами.

В [48] авторы рассматривают выбор базовых смесей для предсказания фазового равновесия по групповой модели.

В настоящее время уже рассчитаны значения групповых параметров для многих практически важных функциональных групп, поэтому для применения модели UNIFAC необходимо определить только параметры, учитывающие молекулярную структуру чистых компонентов.

1.8 Постановка задачи исследования

· Провести систематический анализ складок на поверхности равновесных температур кипения для четырехкомпонентных смесей в общем виде.

· Определить качественный ход складок на поверхности равновесных температур кипения и единичных -линий для случая экстрактивной ректификации двухфазных четырехкомпонентных смесей.

· Провести расчетное исследование структуры диаграммы парожидкостного равновесия конкретной четырехкомпонентной смеси с целью получения складок первой кратности на поверхности равновесных температур кипения и единичных -линий.

Страницы: 1, 2, 3, 4



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.