на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Сорбенты
p align="left">Тем не менее привито-фазные сорбенты сейчас наиболее популярны, несмотря на их высокую стоимость и отмеченные недостатки. Более 60% разделений методом ВЭЖХ (по другим данным-более 70%) выполняют с использованием только обращенно-фазных привитых сорбентов, основным из которых является сорбент с привитой фазой C18.

Можно отметить следующие преимущества, обеспечивающие преобладающее использование привитых сорбентов на основе силикагеля: механическая устойчивость к высоким давлениям; отсутствие перехода привитой фазы в растворитель в процессе хроматографического разделения (если не протекают реакции, приводящие к химическому отщеплению привитой фазы); устойчивость к действию растворителей, температуры, воды, рН; быстрота установления равновесия при смене элюента, что обеспечивает оперативность работы и возможность работы в градиентном режиме с быстрым возвратом к исходному режиму; возможность варьировать в широких пределах селективность за счет изменения степени прививки, дополнительной химической обработки и замены растворителя.

Так как среди начинающих работать в области ВЭЖХ очень большой процент составляют специалисты по ГХ, имеет смысл сделать следующее замечание. Очень большой ассортимент неподвижных фаз (неоправданно большой, по мнению многих компетентных ученых) в ГХ и стремление иметь как можно более широкий выбор фаз и в ВЭЖХ-основная ошибка начинающих. Если в газовой хроматографии, по крайней мере в ее классическом варианте, подвижная фаза практически не оказывает влияния на селективность разделения, то в жидкостной хроматографии ее влияние огромно. Так как в разделении очень активно участвуют как привитая фаза, так и адсорбированные (абсорбированные) компоненты подвижной фазы, широкий ассортимент сорбентов для ВЭЖХ в большинстве случаев не нужен. Изменением состава подвижной фазы очень часто легко добиться той же селективности, что и за счет применения нового дорогостоящего привито-фазного сорбента. Приведенное выше утверждение не относится, конечно, к принципиально новым вариантам сорбентов для ВЭЖХ (например, особо широкопористым, предназначенным для работы с большими молекулами, такими, как белки). Для начинающего же работать в ВЭЖХ рекомендуется тщательно изучить 2-4 сорбента, находящие применение для его объектов исследования, и широкий ассортимент растворителей и добавок разного типа, их влияние на разделение данного класса веществ на выбранной группе сорбентов. Только после того, как приобретен опыт работы с привитыми фазами в комплексе с растворителями, но есть задачи, которые не удается решить с их помощью, следует пробовать новые привитые фазы. Справедливость данного замечания как раз и подтверждается тем, что 60-70% успешных разделений, описанных в литературе, проведено только на привитых фазах одного типа - обращенно-фазных, к рассмотрению которых мы сейчас и перейдем.

Наиболее популярными являются так называемые обращенные привитые фазы, применяемые в обращенно-фазной ВЭЖХ. Понятие «обращенный» пришло от классической ЖХ на силикагеле, где в «прямой» системе подвижная фаза неполярна. а неподвижная полярна (соответственно гексан и силикагель). По этому принципу «обращенная» система должна иметь полярную подвижную фазу и неполярную неподвижную (соответственно водный метанол и октадецилсилан на силикагеле, привитый химически). Названия обращенно-фазный сорбент и обращенно-фазная система не являются особенно удачными или понятными, однако так как это название общепринято, то мы будем его придерживаться.

Поверхность силикагеля, как известно, - довольно большая и развитая (обычно 100-600 м2/г), и в случае гидроксилированного силикагеля покрыта в основном силанольными группами, имеющими концентрацию около 5 на 1 нм2 поверхности. Расчетная максимальная плотность силанольных групп на поверхности несколько выше и составляет около 8 на 1 нм2. Полное гидроксилирование поверхности силикагеля достигается путем его обработки водой при кипении в течение нескольких часов.

Для получения обращенно-фазного сорбента гидроксилированный силикагель обычно обрабатывают хлорсиланами, которые вступают в реакцию довольно активно и образуют при этом устойчивые к гидролизу связи - Si-О-Si-С- Несмотдя на кажущуюся простоту процесса, оказалось, что имеются многочисленные сложности. Первоначально считали, что все силанольные группы вступят в реакцию с образованием мономолекулярного слоя привитой фазы. На практике оказалось, что не все силанольные группы, а только 1,5-2,2 на 1 нм2 вступят в реакцию с алкилхлорсиланами, а остальные не могут реагировать вследствие стерических препятствий и остаются на поверхности сорбента. Правда, привитые группы стерически затрудняют подход к ним молекул анализируемых веществ в процессе разделения.

Первоначально использовали для прививки промышленно доступные три- и дихлорсиланы (октадецилтрихлорсилан и др.), которые, будучи ди- и трифунк-циональными, способны вступать друг с другом в реакцию полимеризации до того, как вступят в реакцию с силанольными группами. Эта полимеризация приводит к тому, что на поверхности могут образоваться значительно более толстые, чем мономолекулярные, полимерные слои фазы (более или менее сильно привитые к поверхности силикагелевой матрицы). В этом случае содержание привитого углерода, определяемое сжиганием, окажется выше, чем теоретически должно привиться по схеме монослойного покрытия поверхности силикагеля. При этом, несмотря на сильное удерживание пробы из-за высокого содержания привитой фазы, эффективность разделения за счет затрудненной диффузии в толстых полимерных пленках может заметно упасть. В то же время большие участки поверхности силикагеля окажутся не покрытыми фазой, что приведет к сильному взаимодействию анализируемых веществ с неэкранированными силанольными группами.

Старые, давно разработанные обращенно-фазные сорбенты, как правило, получали обработкой силикагеля октадецил- или октилтрихлорсиланами. При этом покрытие поверхности было неполным, а привитые слои в той или иной степени (в зависимости от содержания воды в растворителе, степени безводности силикагеля, герметичности аппаратуры, технологии и т.д.) были полимеризованы.

Работа по улучшению качества привитого слоя велась разными учеными постоянно и в разных направлениях. С целью устранения полимеризации прививаемого агента было предложено использовать монохлорсиланы (например, диметилокта-децилхлорсилан, диметилоктилхлорсилан и др.), которые по природе своей монофункциональны и могут дать только мономерный привитой слой. Вода дезактивирует монохлорсиланы, вступая с ними в реакцию, однако в реакцию прививки они уже не вступают и после окончания реакции отмываются вместе непрореагировавшим исходным алкилдиметилхлорсиланом. С целью устранения влияния остаточных силанольных групп было предложено после проведения прививки вести так называемое «окончательное замещение», или «энд кэппинг». В этом случае после прививки основной фазы сорбент обрабатывают сильными реагентами с минимальным мольным объемом (на пример, триметилхлорсиланом), которые блокируют основную массу непрореагировавших силанольных групп. С целью получения сорбентов с более воспроизводимыми хроматографическими свойствами значительно больше внимания стало удеяться качеству растворителей и прививаемых силанов, подготовке (гидроксилированию) исходного силикагеля.

По мере разработки усовершенствованных методов прививки обращенных фаз практически все фирмы имели возможность использовать их для производства нового поколения сорбентов. Тем не менее не было прекращено производство старых сорбентов. В чем причина этого? Причин несколько, но основными являются две: наличие - налаженного производства сорбентов по старой технологии и нежелание его прекращать или перестраивать; разработанные методы анализа разных смесей и требования потребителей, не желающих менять свои методики анализа. Более консервативные фирмы, имеющие хороший сбыт старых обращенно-фазных сорбентов, продолжают их выпускать, а более прогрессивные наряду с выпуском старых организуют выпуск новых модификаций сорбентов, вводя для них отличительные знаки или цифры. Так, фирма «Ватман» имеет четыре варианта сорбента «октадецилсилан на силикагеле», при этом силикагелевая матрица одна и та же, фирма «Уотерс» - не менее трех, различающихся методом прививки и силикагелевыми матрицами (два сферической формы и один - неправильной), фирма «Фэйс Сепарейшн» - два варианта на одной силикагелевой матрице и т.д.

Ознакомившись с этими данными, начинающий и даже более опытный специалист по ВЭЖХ обычно задает вопрос: какой же обращенно-фазный сорбент следует считать наилучшим и приближающимся к идеальному? Ответить на такой вопрос конкретным названием сорбента, к сожалению, невозможно по многим причинам. Основной из них является то, что наилучшим, с точки зрения хроматографии, является тот сорбент, который обеспечивает для данной смеси наилучшее разделение в кратчайший срок. Зачастую сниженная химическая однородность поверхности старых сорбентов в результате комбинированного (распределительного и адсорбционного, иногда в сочетании с ионообменным) механизма удерживания обеспечивает такое разделение, а сорбент с химически более однородной поверхностью не обеспечивает.

Однако, если поставить вопрос в другой форме, а именно: какой сорбент теоретически является идеальным для обращенно-фазной хроматографии и каким требованиям должен отвечать соответствующий реальный сорбент - ответить можно более конкретно. Идеальным для обращенно-фазной хроматографии следует считать сорбент, обеспечивающий «чисто обращенно-фазное» взаимодействие растворенного вещества с его поверхностью, т.е. при полном отсутствии влияния адсорбции, взаимодействия с полярны. ми группами, ионообменных и эксклюзионных процессов. Исходя из этого, приближающийся к идеальному реальный сорбент должен иметь максимально полное покрытие поверхности мономолекулярным слоем привитой фазы, в нем должны отсутствовать доступные для взаимодействия с анализируемыми веществами силанольные и другие полярные группы или группы с ионообменными свойствами, он должен иметь минимальное количество таких групп, которые экранированы и недоступны для подобных взаимодействий (теоретически), и иметь поры, практически исключающие вклад в удерживание анализируемых веществ эксклюзионных процессов. Такой сорбент должен, по имеющимся представлениям, иметь поры размером 10-30 нм (для анализа веществ с молекулярной массой до 800-1000). Перед прививкой поверхность сорбента должна быть полностью гидроксилирована, однако сорбент не должен содержать адсорбированной воды. Прививку следует проводить с использованием монохлорсиланов, например октадецилдиметилхлорсилана, в условиях, обеспечивающих наиболее полное протекание реакции с силанольными группами. После окончания прививки проводят «энд кеппинг», т.е. обработку триметилхлорсиланом для окончательного устранения доступных силанольных групп на поверхности сорбента. Наконец, сорбент должен быть полностью отмыт после окончания реакции от всех остатков использовавшихся рактивов и побочных продуктов реакции.

Каждому хроматографисту приходится решать, какой же из доступных для него обращенно-фазных сорбентов является наиболее приближающимся к идеальному. При этом ему приводится пользоваться данными фирмы о размере пор (среднем) У их кривой распределения, об объеме пор, поверхности сорбента, прививаемом агенте, наличии или отсутствии дополнительной обработки («энд кэппинга»). Эти данные, как правило, неполные и не содержат многих важных сведений, касающихся технологии и в большой мере определяющих качество сорбента. кроме того, многие данные носят рекламный характер.

Силикагель, используемый как матрица для последующей прививки неподвижной фазы, играет важнейшую роль в определении конечных свойств получаемого сорбента. Он имеет пространственно-пористую структуру, образованную диоксидом кремния в процессе образования золя, геля и последующей его сушки с удалением физически сорбированной воды. В зависимости от условий формования силикагеля могут быть получены образцы со средними размерами пор от 3 до 10 нм. За счет последующей гидротермальной обработки силикагеля может быть достигнуто значительное увеличение размера пор (до 20-50 нм и более) при сохранении в основном объема пор. Методами формования микросферических сорбентов для ВЭЖХ из тетраэтоксисилана за счет варьирования условий формования и отверждения, выбора растворителей и т.п. удается добиться получения силикагеля с достаточно высокой пористостью (свободный объем пор 0,7-1,2 мл/л) и порами от 5 до 400 нм и более.

Какую же силикагелевую матрицу использовать для прививки неподвижной фазы? Следует учитывать ряд важных обстоятельств. Если использовать матрицу с порами 3-5 нм, размер таких пор соизмерим с длиной цепи октадецилсилана (около 1 нм). Если предположить плотную прививку к такому сорбенту октадецилсилановых групп, становится очевидным, что узкие поры уменьшатся в диаметре очень значительно (некоторые даже вообще закроются) и станут недоступными для попадания в них крупных анализируемых молекул. Это может внести существенный вклад в изменение удерживания и порядка выхода компонентов. Если первоначально для прививки использовали силикагели с размерами пор 5-6 нм, то в последующем перешли к порам около 10 нм, а сейчас считают более целесообразным даже 15-30 нм. Это связано со все возрастающим использованием привитых сорбентов для анализа р больших по молекулярной массе биополимеров, таких, как белки, полипептиды и др.

Кроме размера пор, большую роль играет объем пор силикагеля и его поверхность. Если рост поверхности дает увеличение количества силанольных групп (их плотность около 5 на 1 нм2) и количества привитой фазы при равной плотности прививки, то рост объема пор играет сложную роль. При увеличении объема пор не только увеличивается проницаемость силикагеля, но и уменьшается объем самого диоксида кремния и соответственно прочность силикагеля; он легче разрушается в процессе транспортировки, при набивке колонок, повышении давления при эксплуатации колонок. Правда, прочность определяется не только толщиной стенок ячеек силикагеля, но и их структурой.

Страницы: 1, 2, 3



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.