на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Стандартизация измерения рН в неводных средах. Методы определения рН стандартных буферных растворов
p align="left">По Шварценбаху, аналогия заключается в том, что коэффициенты активности и ,так же как и коэффициенты активности и представляют коэффициенты активности веществ, отличающихся только одним зарядом.

Предположение Шварценбаха сводится к тому, что отношение коэффициентов / равно отношению /

Оказалось, что это далеко не так. Исследование этих функции кислотности в 0,002 н. раствора НС1 в смесях спирта с водой показало для функции Н0 иную зависимость от содержания спирта, чем для функции Н(-). Следовательно, Н(-) не передает истинной кислотности раствора. Появление заряда на молекуле осложнит в результате присоединения протона вызывает также резкое изменение энергии взаимодействия незаряженной молекулы индикатора и ее иона с растворителем. Все это говорит о том, что нельзя приравнивать изменение H0 к изменению кислотности. Задача может быть решена, если будут известны для В и ВН+, только тогда Н0 можно исправить и найти истинную величину -lg аН+(М).

Таким образом, ни Н0, ни Н(-) не оценивают правильно единую кислотность растворов.

Очень существенным недостатком метода Гамметта является также необходимость использования нескольких индикаторов при определении кислотности. Согласно теории индикаторов, заметить изменение окраски, по которой судят об изменении Н0, можно только тогда, когда будет присутствовать не меньше 10% одной формы индикатора в присутствии 90% другой; можно заметить окраску вещества ВН+, когда оно будет составлять более 10% от вещества В, и наоборот. С помощью одного индикатора можно определить изменение кислотности только в пределах 2 единиц рН и Н0.

В воде шкала рН=14; следовательно, нужно иметь семь индикатором для оценки кислотности.

Рассмотрим, насколько метод Гаммета пригоден для определения кислотности в пределах одного неводного растворителя.

Нельзя принимать, как это делает Гамметт, что в неводных растворах соотношение между константами индикаторов остается таким же, как и в воде. Как известно, растворитель оказывает дифференцирующее действие. Оно сводится к тому, что относительная сила кислот или оснований изменяется при переходе от одного растворителя к другому.

Разность в pК двух индикаторов основания В1 и В2 определится выра-жением:

pKA1-pKA2=-lg (2.4.10)

Введем концентрационные активности а* и коэффициенты активности тогда получим:

pKA1-pKA2=-lg (2.4.11)

Из уравнения (26) следует, что разность рK определяется не только соотношением активностей а*, но и соотношением коэффициентов актив-ности . Нет никаких оснований утверждать, что

(2.4.12)

и, следовательно, соотношение рКА не остается неизменным.

Это обстоятельство затрудняет использование метода Гамметта и в пре-делах одного растворителя. Необходима экспериментальная проверка pK индикаторов в каждом растворителе.

Есть и третий недостаток метода Гамметта, заключающийся в том, что иногда окраска индикатора изменяется не в связи с изменением соотношения между разными формами индикаторов ВН+ и В, а в связи с тем, что окраска одной из форм индикатора изменяется под влиянием растворителя. Однако главный недостаток метода Гамметта состоит в том, что влияние раствори-телей па заряженную и незаряженную формы индикатора не одинаково, в связи с чем Н0 не передает истинной кислотности неводных растворов.

Для оценки кислотности кроме функций Н0 и Н(-) предложены функция Н(+), основанная на зависимости положения равно-весия реакции ВН2+ = В+ + Н+ от кислотности, а также функция кислот-ности I0 , основанная на зависимости положения равновесия реакции ROH + H+ =R+ + H2O (R+ - ион карбония, ROH-арилкарбинол) от кис-лотности.

Каждая функция кислотности определяется значением соответствующих величин рК и отношением концентраций кислотной и основной форм инди-катора:

H0=pKBH++lg(cB/cBH+) H(-)=pKBH+lg(cB-/cBH)

I0=pKR++lg(cROH/cR+) H(+)=pKBH2++lg(cB+/cBH2+)

Соотношение между этими функциями кислотности и величиной истинной единой кислотности рА = -lg aH+ определяется следующими выражениями:

из которых следует, что они не совпадают между собой и что ни один из них не передает истинной кислотности.

2.5Метод нормального потенциала Плескова

Исследуя потенциалы щелочных металлов -- лития, натрия, калия , рубидия, цезия, - Плесков установил, что э. д. с. цепи Rb|Rb+||Cs+|Cs оказывается неизменной во многих растворителях. На основании этого Плесков высказал предположение о том, что потенциал цезиевого или рубидиевого электродов следует считать неизменным в различных растворителях, т, е. считать, что э. д. с. Pt(H2)|H+||Cs+|Сs при переходе от одного растворителя к другому изменяется не за счет цезиевого электрода, а только за счет водородного электрода.

Однако неизменность разности потенциалов рубидия и цезия не означает, что каждый из этих потенциалов не изменяется при переходе от растворителя к растворителю - они изменяются, но в одинаковой степени.

Этот вывод был сделан на том основании , что изменение потенциала цепи Hg(Cs) | CsCl | AgCl, Ag при переходе от воды к спирту близко к изменению потенциала цепи Pt(H2)|HCl|AgCl, Ag. В этих цепях анионы одинаковы; следовательно, изменения потенциалов водородного и цезиевого электродов (во всяком случае при переходе от воды к спиртам) близки между собой. Поэтому не было оснований предполагать,, что изменение потенциала цепи Pt(H2)|H+|Сs+| Cs во всех растворителях обязано только водородному электроду; изменение потенциала обязано и водородному и цезиевому электродам. Это говорит о том, что в общем нельзя основывать оценку кислотности в неводных растворах на предположении Плескова.

Предположение Плескова оправдывается но отношению к растворителям с высокой диэлектрической проницаемостью и резко отличной от воды основностью (аммиак и муравьиная кислота), однако нельзя распространить этот результат на другие растворители без эксперименталь-ной проверки.

Строго, единая кислотность, которую мы обозначаем рА, отнесенная к воде в качестве единого стандартного состояния, определяется величиной отрицательного логарифма активности иона МН+:

(2.5.1)

где абсолютная активность иона МН+ ,отнесенная к активности протона в разбавленном водном растворе в качестве единого стандартного состояния.

Такая оценка кислотности является термодинамически строго обосно-ванной. Единая активность ионов лиония, отнесенная к воде в качестве стандартного состояния, может быть выражена так:

(2.5.2)

Подставляя эту величину в уравнение (2.5.1), получим:

(2.5.3)

в котором активность а* отнесена к бесконечно разбавленному раствору ионов в неводной среде, а коэффициент отнесен к воде в качестве стан-дартного состояния.

Величина --lg а*МН+ называется рНр. Она может быть измерена для любого неводного раствора против стандарта в том же самом неводном рас-творе. В определении этой величины затруднений нет.

Следовательно

pA = pHр (2.5.4)

Это однозначное определение величины рА.

2.6. Применение средних коэффициентов активности ионов для оценки единой шкалы кислотности

Для оценки единой шкалы кислотности можно воспользоваться сред-ними коэффициентами активности ионов сильной соляной кислоты.

Было установлено, что они могут быть определены только для суммы электролитов в целом. Эти величины хорошо известны для ионов ряда сильных кислот, особенно для HCl во многих растворителях. Например, для этилового спирта 2lg. Однако какая часть величины 5,02 составляет lg и какая часть lg мы не знаем. В связи с этим было предложено поступать так: принять, что средний коэффициент активности ионов кислоты равен коэффи-циенту активности ионов лиония, т. е. предположить, что:

lg (2.6.1)

Из этого предположения следует, что величина рА определяется выра-жением

(2.6.2)

Такой прием вносит определенную ошибку, обусловленную различием в величинах протонов и анионов кислот, однако сравнение для разных кислот показало, что эти величины близки между собой; например,

и этиловом спирте , , и т.д. Это же наблюдается и для других растворителей.

Эксперименты показывают, что величины ионов кислот в спиртам лишь несколько отличаются от величины: ионов солей. Поэтому нельзя предполагать, что изменения энергии сольватации ионов лиония резко отличается от изменения энергии сольватации остальных катионов. Во всяком случае, величина ионов кислот является вполне однозначной и, вероятно, оценивает изменение кислотности с большей надежностью, чем величины Н0, Н(-), рННас и т.д.

2.7 Нахождение единой кислотности рА с помощью протонов

Все перечисленные выше методы не позволяют однозначно оценить кислотность неводных растворов в единой шкале. Вопрос об этой шкале может быть решен только на основании данных о величинах химической энергии сольватации протонов в различных растворителях. Эти данные получены на основании подсчетов сумм и разностей хими-ческих энергий сольватации ионов в неводных растворах из данных об элек-тродвижущих силах цепей без переноса и с переносом в неводных растворах. Путем экстраполяции величин суммарной энергии сольватации ионов водо-рода и ионов галогенов (ионы галогеноводородных кислот) и разностей энергий сольватации ионов водорода и ионов щелочных металлов была определена энергия сольватации протона и других ионов в различных растворителях.

При переходе от водного к неводному раствору следует считаться с том, что протяженность шкалы различна для разных растворителей. Для того чтобы оценить абсолютную кислотность, кроме протяженности шкалы нужно знать, как смещено начало шкалы кислотности одного растворителя но отношению к шкале кислотности воды.

Использование протонов в различных растворителях в качестве единой меры изменения кислотности в разных растворителях однозначно характеризует величину смещения шкал кислотности.

Обозначим начало шкалы для воды через 0; шкала для этилового спирта имеет протяженность 19,3; если = 4,2, то очевидно, что шкала в этиловом спирте начинается в области --4,2 и заканчивается при рА = 15,1. У метилового спирта = 3,3, а вся шкала 16,9; шкала для него расположится от - 3,3 до +13,6; в муравьиной кислоте = 8,6, вся шкала равна 6,1, она расположена между -8,6 и -2,5. У амми-ака протяженность шкалы 32,7; она смещена по отношению к воде на 16,4 единицы, начало шкалы будет при рА = 16,4, а конец при рА = 49,1. Из этих сопоставлений следует, что самый щелочной раствор в муравьиной кислоте будет кислее самого кислого раствора в воде и самый кислый раствор в аммиаке щелочнее самого щелочного раствора в воде,

Относительное расположение шкалы рНр позволяет оценить отношение между единой кислотностью растворов и величиной рНр. Из рис. 2 сле-дует, что раствор кислоты в спирте, в котором активность а*= (рНр= 0), кислее соответствующего йодного раствори на 4,2 единицы.

Рис. 2. Изменение рНр (1), рА (2), Н0 (3), и Н(-) (4) растворов HCl (I), и ацетатного буфера (II) в растворах этилового спирта в воде.

Однако не нужно думать, что всякий раствор кислоты в этиловом спирте будет кислее, чем в воде. В действительности рА нормального раствора соляной кислоты в этиловом спирте не будет равна -4,2, так как в нем вели-чина значительно меньше величины в воде.

Таким образом, в этиловом спирте, с одной стороны, положителен, и это приводит к уменьшению рА и увеличению кислотности. С другой стороны, lg отрицательны и по абсолютной величине больше, чем у воды, а это приводит к увеличению рНр и к уменьшению кислотности. В 1 н. рас-творе HCl в этиловом спирте величина = 0,157. В результате этого рА 1 н раствора HCl в этиловом спирте будет не -4,2, а значительно меньше (только -3,3), но все же раствор в этиловом спирте значительно кислее, том в воде.

Можно сказать, что в этиловом спирте каждый ион лиония становится активнее, по число ионов лиония становится меньше.

Еще резче это будет проявляться в спиртовых растворах уксусной кислоты: с одной стороны, кислотность ионов лиония С2Н5ОН2+ по сравнению с водой увеличивается на 4,2 единицы, но, с другой стороны, константа диссоциации кислоты при переходе от воды к этиловому спирту уменьшается на 5,6 порядка, и оба эффекта в значительной степени компенсируются. Величина рА ацетатного буферного раствора только 5,5. Повышение абсо-лютной кислотности будет особенно большим только в разбавленных растворах сильных кислот, в которых = 1.

Для иллюстрации на рис. 2 приведены данные для рН и рА разба-вленных растворов сильной соляной кислоты (0,002 н. НС1 + 0,008 н. NаCl) и буферных растворов, состоящих из 0,02 н. НАс и 0,01 п. NaAc + 0,0005 н. NaCl в смесях этилового спирта с водой.

Из рис.2 следует, что рНр разбавленных растворов соляной кислоты практически не изменяются при переходе от воды к спиртам. Наоборот, рА резко падают. В отличие от этого рНр ацетатного буфера сильно возрастают в связи со значительным ослаблением силы кислоты.. Величина рА этого буфера изменяется мало и не уменьшается, как в случае растворов HCl, а несколько возрастает. Из рис, 2 следует также, что ни H0, ни Н(-) не передают действительного хода зависимости единой кислотности с изменением растворителя. Более того, Н(-) одного и того же раствора, измерен-ная с помощью различных индикаторов [2,4-динитрофенол (Н(-)) и димедон (Н'(-))], расходятся. В этиловом спирте они отличаются более чем на еди-ницу рА. Еще большее расхождение между рА, Н0 и Н(-) для раствором сильных кислот, где они разнятся на 2--4 единицы.

Страницы: 1, 2, 3, 4



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.