на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Численные методы расчетов в Exel
p align="left">в). В окне “Массив” укажем адрес массива исходной матрицы A6:C8.

г). Для того, чтобы вставить формулу во все выделенные ячейки (A11:C13), нажмем одновременно клавиши Ctrl+Shift+Enter.

В ячейках A11:C13 появится:

-- в режиме формул -- =МОБР(А6:C8) ;

-- в режиме значений -- массив обратной матрицы.

Шаг третий:

Для умножения обратной матрицы на столбец свободных членов:

а). Выделим ячейки E11:E13.

б). При помощи Мастера функций выберем функцию МУМНОЖ, категория Математические.

в). В окно “Массив 1” введем адрес массива обратной матрицы A11:C13.

г). В окно “Массив 2” введем адрес массива матрицы свободных членов E6:E8.

д). Для вставки Формулы во все выделенные ячейки (E11:E13), нажмем одновременно клавиши Ctrl+Shift+Enter.

В ячейках E11:E13 появится:

-- в режиме формул -- =МУМНОЖ(А11:C13;E6:E8) ;

-- в режиме значений -- компоненты векторов решения x1 , x2 , x3 .

Таблицы прилагаются. Режим формул -- “Приложение 7”. Режим значений -- “Приложение 8”.

1.2). Проверка -- сравнение результатов, полученных разными способами.

Для наглядности создадим сравнительную таблицу:

 

Математический расчет методом обратной матрицы

Обращение матрицы в EXCEL

x1

0,521737

0,521737318

x2

0,391105

0,391104998

x3

1,019069

1,019069651

1.3). Вывод.

Сначала предложенную нам систему уравнений мы решили методом обратной матрицы. Затем в EXCEL составили специальную программу, позволяющую решить систему уравнений путем обращения матрицы.

Для наглядности полученные результаты занесли в сравнительную таблицу.

Из таблицы видно, что результаты получились практически одинаковыми. Отклонения в значениях расходятся в столь малых пределах, что являются допустимыми для нашего случая. Однако это произошло из-за того, что при выполнении математических расчетов значения округлялись.

Таким образом, мы выявили, что в EXCEL результаты получаются более точные.

2) Решение заданной системы уравнений методом простых итераций.

Для того, чтобы решить систему трех линейных уравнений методом простых итераций, необходимо ее преобразовать так, чтобы диагональные коэффициенты матрицы x1 , x2 , x3 были максимальными по модулю. Этим выполняется 1-е условие сходимости итерационного процесса.

Заданная нам система имеет вид:

0,1x1 + 4,6x2 + 7,8x3 = 9,8

2,8x1 + 6,1x2 + 2,8x3 = 6,7

4,5x1 + 5,7x2 + 1,2x3 = 5,8

a) Достаточно хорошо видно, что для преобразования нам достаточно только поменять местами первое и третье уравнения. Получится система вида:

4,5x1 + 5,7x2 + 1,2x3 = 5,8

2,8x1 + 6,1x2 + 2,8x3 = 6,7

0,1x1 + 4,6x2 + 7,8x3 = 9,8

б) Для решения системы уравнений методом простых итераций необходимо представить полученную систему уравнений в итерационной форме, записав каждое из трех уравнений в виде решения относительно той неизвестной переменной, которая имеет наибольший по модулю коэффициент.

4,5x1 + 5,7x2 + 1,2x3 = 5,8

x1 = - 5,7x2 / 4,5 - 1,2x3 / 4,5 + 5,8 / 4,5

2,8x1 + 6,1x2 + 2,8x3 = 6,7

x2 = - 2,8x1 / 6,1 - 2,8x3 / 6,1 + 6,7 / 6,1

0,1x1 + 4,6x2 + 7,8x3 = 9,8

x3 = - 0,1x1 / 7,8 - 4,6x2 / 7,8 + 9,8 / 9,7

В итерационной форме получили систему:

x1 = - 5,7x2 / 4,5 - 1,2x3 / 4,5 + 5,8 / 4,5

x2 = - 2,8x1 / 6,1 - 2,8x3 / 6,1 + 6,7 / 6,1

x3 = - 0,1x1 / 7,8 - 4,6x2 / 7,8 + 9,8 / 9,7

в) Проверка выполнения первого условия сходимости метода для данной системы.

При использовании итерационного метода решения необходимо обязательно проверить два условия сходимости метода для данной системы. Первое условие у нас выполнено (диагональные коэффициенты матрицы x1 , x2 , x3 в полученной системе являются максимальными по модулю).

г) Проверка выполнения второго условия сходимости метода для данной системы (условие “НОРМА”).

Теперь необходимо проверить условие “НОРМА” (обозначается ¦C¦), т.е. необходимо оценить сходимость метода для данной системы, которая зависит только от матрицы коэффициентов [ C ]. Процесс сходится только в том случае,если норма матрицы [ С ] меньше единицы, т.е.

¦C¦=v?aaj2 <1

В итерационной форме имеем систему:

x1 = - 5,7x2 / 4,5 - 1,2x3 / 4,5 + 5,8 / 4,5

x2 = - 2,8x1 / 6,1 - 2,8x3 / 6,1 + 6,7 / 6,1

x3 = - 0,1x1 / 7,8 - 4,6x2 / 7,8 + 9,8 / 7,8

или

x1 = 0 - 5,7x2 / 4,5 - 1,2x3 / 4,5 + 1,288889

x2 = 2,8x1 / 7,8 - 0 - 2,8x3 / 6,1 + 1,0983607

x3 = 0,1x1 / 7,8 - 4,6x2 / 7,8 - 0 + 1,2564103

Проверка выполнения второго условия “НОРМА” :

0 - 5,7 / 4,5 - 1,2 / 4,5

[C] = - 2,8 / 6,1 0 - 2,8 / 6,1

- 0,1 / 7,8 - 4,6 / 7,8 0

¦C¦ = v У aij2 < 1

¦C¦ = v (-5,7 / 4,5)2 + (-1,2 / 4,5)2 + (-2,8 / 6,1 )2 + (-2,8 / 6,1)2 + (-0,1 / 7,8)2 + (-4,6 / 7,8)2

¦C¦= v (-1,2666667)2 +(-0,2666667)2 +(-0,4590164)2 +(-0,4590164)2 +(-0,0128205)2 +(-0,5897436)2

¦C¦= v (1,6044445) + (0,0711111) + (0,2106961) + (0,2136961) + (0,0001691) + (0,3477975)

¦C¦ =v 2,4449144

¦C¦ = 1,5636222 > 1

Таким образом, условие “НОРМА” не выполнено.

Вывод: так как второе условие сходимости итерационного процесса не выполнено, то решение данной системы уравнений не может быть получено методом простых итераций.

Задача 3.

Комплексные числа.

Даны два комплексных числа, записанные в показательной форме.

z1 = 3e -(р/4) i

z2 = е (р/4) i

1). Записать эти числа в тригонометрической форме;

2). Найти сумму z1 + z2 и произведение z1 · z2 , переведя их в алгебраическую форму записи;

3). Изобразить на комплексной плоскости операнды и результаты.

Основные понятия.

Комплексным числом называется выражение вида

z = x + iy , где

“x” и “y” -- действительные числа,

“i” -- символ, называемый мнимой единицей и удовлетворяющий условию i2 = -1.

Операнд -- величина, представляющая собой объект операции, реализуемой ЭВМ в ходе выполнения программы вычислений.

Решение.

1). Тригонометрическая форма записи.

Положение точки z на комплексной плоскости однозначно определяется не только декартовыми координатами x , y , но и полярными координатами r , ц. Воспользовавшись связью декартовых и полярных координат, получим тригонометрическую форму записи комплексного числа

z = r cos ц + i r sin ц = r ( cos ц + i sin ц ),

где cos ц + sin ц = eiц => ц = р/4

При этом r называют модулем, а ц - аргументом комплексного числа.

1.1) z1 = 3 · (cos р/4   -  i sin р/4) = 3v2/2  - i 3v2/2

1.2) z2 = r · eiц = r (cos р/4  +  i sin р/4) = v2/2 + i v2/2 

2). Алгебраическая форма записи:

2.1) Сумма.

Если z1 = x1 + iy1 , а z2 = x2 + iy2 , то

z1 + z2 = (x1 + iy1) + (x2 + iy2) = (x1 + x2) + i (y1 + y2)

z1 + z2 = (3v2/2  + v2/2) + i (-3v2/2  + v2/2) = 4v2/2 - i 2v2/2= = 2v2 - iv2

2.2) Произведение.

Если z1 = x1 + iy1 , а z2 = x2 + iy2 , то

z1 · z2 = (x1 + iy1) · (x2 + iy2) = (x1x2 - y1y2) + i (x1y2 + x2y1)

z1·z2 =(3v2/2 ·v2/2 +  3v2/2 ·  v2/2)+ i(3v2/2 ·  v2/2 - v2/2 · 3v2/2 )=

= 3· 2/4 + 3 · 2/4 + i · 0 = 3

3).Изображение на комплексной плоскости операнд и результатов.

Для упрощения преобразуем значения x и y из простых дробей в десятичные.

x1 = 3v2/2 = 2,1 y1 = - 3v2/2 = -2,1

x2 = v2/2 = 0,7 y2 = v2/2 = 0,7

x3 = 2v2 = 2,8 y3 = -v2 = -1,4

x4 = 3 y4 = 0

y

0,7 Z2

0,7 2,1 2,8

0 Z4

3 x

- 1,4 Z3

- 2,1 Z1

Операнды -- Z1 и Z2

Результаты -- Z1 + Z2 = Z3

Z1 · Z2 = Z4

Страницы: 1, 2, 3, 4



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.