на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Дифференциальные уравнения и описание непрерывных систем
p align="left">Тогда справедлива теорема:

Пусть x(t, м'') -- решение данной системы при значении параметров м=м'', удовлетворяющее начальным условиям x(t0, м'')=x0. Тогда для любого >0 существует такое (, h)>0, что если справедливо неравенство |м'-м''|<, то решение x(t, м'') определено на интервале |t--t0|?h и удовлетворяет неравенству

|| x(t, м')-x(t, м'') ||<.

Доказанные теоремы о непрерывной зависимости решений от начальных условий и параметров имеют принципиальное значение. Параметры дифференциальных уравнений систем автоматического регулирования (САР) задаются с некоторыми погрешностями. На основании доказанных выше теорем можно утверждать, что если погрешность в определении параметров дифференциальных уравнений САР незначительна, то решения этих уравнений с достаточной достоверностью описывают происходящие в САР процессы.

2.7. Линейные дифференциальные уравнения

2.7.1. Нормальная линейная система дифференциальных уравнений

Линейной системой дифференциальных уравнений называется такая система уравнений, в которую неизвестные функции и их производные могут входить только в первой степени.

Нормальная линейная система дифференциальных уравнений имеет вид

Введем в рассмотрение векторные функции

Тогда систему (1) можно переписать в виде

Теорема существования и единственности справедлива для линейной системы на любом отрезке [а1 ,b1](а, b), где (a, b) - интервал, на котором функции aik(t) и fi(t) непрерывны.

2.7.2. Общее решение линейной однородной системы

Система (1) называется однородной, если fi(t)0 (i=1, 2, …, n). Однородная система в векторной форме запишется в виде

(3)

Совокупность S всех решений {x(t)} образует линейное пространство размерности n, так как решения этой системы являются линейно-независимыми и образуют базис. Любой элемент этого пространства представим в виде

(4)

причем постоянные c1, c2, …, cn определяются однозначно. Отсюда следует, что любое решение данной системы может быть представлено в виде (4). Поэтому выражение (4) называется общим решением системы (3). Любая система из n линейно-независимых решений системы (3), образующая базис пространства S, называется фундаментальной системой решений.

2.7.3. Определитель Вронского. Формула Лиувилля

Пусть имеется некоторая система из n векторных функций

Тогда определителем Вронского, или вронскианом, называется определитель, составленный из компонент этих векторных функ-ций. Таким образом, определитель Вронского имеет вид

Если система векторных функций x1(t), ..., хn(t) линейно-зависима, то определитель Вронского W(t)=0.

Пусть вектор-функции x1(t), ..., xn(t) представляют собой n решений системы (3). Тогда, если определитель Вронского W(t) для этих решений обращается в ноль в какой-нибудь точке t0[а, b], то W(t) тождественно равен нулю на всем отрезке [а, b].

Пример: рассмотрим вектор-функции

Определитель Вронского для этих функций

При t = 0 W(0) = 0, но W(t) не равен тождественно 0. Отсюда следует, что данные вектор-функции х1(t) и x2(t) не могут быть решениями системы уравнений вида (3) с непрерывными коэффициентами, определенными на интервале, содержащем точку t=0.

Значение определителя Вронского в произвольной точке t можно вычислить с помощью рассмотренной ниже зависимости, называемой формулой Лиувилля.

Пусть x1(t), x2(t), ..., xn(t) -- n решений системы (3). Тогда между значениями определителя Вронского W(t) в точках t0 и t существует следующая зависимость:

- след матрицы A(t).

2.7.4. Линейная неоднородная система. Метод вариации произвольных постоянных

Рассмотрим линейную неоднородную систему (2)

Соответствующая ей однородная система (3)

Пусть x=(t) и (t) - два решения системы (2). Тогда разность

(t)= (t)-(t)

Представляет собой решение однородной системы (3).

Общее решение системы (2) имеет вид

где ci - произвольные постоянные; i(t) (i=1, 2, …, n) - фундаментальная система решений системы (3).

Частное решение системы (2) может быть найдено методом вариации произвольных постоянных. Рассмотрим этот метод. Пусть 1(t), 2(t), …, n(t)-- фундаментальная система решений системы (3). Частное решение неоднородной системы (2) будем искать в виде

полагая, что ci являются не постоянными, а некоторыми функциями t. Подставим это решение в систему (2):

Так как вектор-функции i(t) - являются решениями однородной системы (3), то

поэтому

Это выражение представляет собой систему линейных алгебраических уравнений относительно сi(t) (i=l, 2, ,..., n). Определитель этой системы уравнений есть определитель Вронского для фундаментальной системы решений. Он отличен от нуля, поэтому эта система имеет единственное решение сi'(t)=Фi(t) (i=l, 2,..., n).

Интегрируем полученные равенства:

Следовательно, искомое частное решение имеет вид

Значит, общее решение неоднородной системы будет

2.7.5. Формула Коши

При помощи формулы Коши можно выразить решение линейной неоднородной системы дифференциальных уравнений через некоторую фундаментальную систему решений соответствующей однородной линейной системы.

Рассмотрим неоднородную линейную систему дифференциаль-ных уравнений (2), записанную в векторном виде

Соответствующая ей однородная система (3)

Пусть 1, 2, …, n - фундаментальная система решения системы уравнений (3). Образуем матрицу X1(t), столбцы которой являются этими решениями:

Определитель матрицы Х1(t) представляет собой определитель Вронского. Он отличен от нуля для всех t[a, b]. Следовательно, существует обратная матрица X-11(t) при каждом t[а, b]. Составим матрицу

X(t, t0) = X1(t)X1-1(t0)

Столбцы этой матрицы также образуют фундаментальную систему решений системы уравнений (3). Отметим, что X(t, t0)= Назовем матрицу X(t, t0) фундаментальной матрицей системы (3). Эта матрица удовлетворяет матричному уравнению

Решение (t) системы уравнений (3), удовлетворяющее начальным условиям (t0)=x0, можно записать в виде

Тогда можно показать, что следующая формула, называемая формулой Коши, позволяет найти решение x(t) неоднородной системы (2), удовлетворяющее начальным условиям x(t0)=x0, если известна фундаментальная матрица X(t, t0) однородной системы (3):

Следует отметить, что если матрица А постоянная, т. е. рас-сматриваемая система дифференциальных уравнений является системой линейных уравнений с постоянными коэффициентами

то решение этой системы x(t), удовлетворяющее начальным условиям x(t0)=x0, запишется в виде

где X (f) -- матрица, столбцы которой состоят из фундаменталь-ной системы решений однородной системы уравнений xt'=Ах, причем X (t0) = E.

2.7.6. Линейное уравнение n-го порядка

Линейное уравнение n-го порядка имеет вид

где a0(t), …, an(t) -- непрерывные функции для t(a, b), при-чем а0(t)0. Соответствующее этому уравнению однородное урав-нение имеет вид

Эти уравнения путем введения вспомогательных функций

можно свести соответственно к системам уравнений

или в векторной форме,

Пусть начальные условия этой системы имеют вид

Эта система имеет единственное решение

Для нахождения частного решения ф(t) данного уравнения можно использовать метод вариации произвольных постоянных. При этом система алгебраических уравнений для нахождения сi'(t) имеет следующий вид:

Определитель этой системы есть определитель Вронского для линейно независимой системы решений 1 ,…, n, поэтому W(t)0, и данная система имеет единственное решение. Интегри-руя полученные значения для c'i(t), найдем ci(t) и тогда искомое решение

Решение x(t) исходного уравнения, удовлетворяющее заданным условиям, найдется по формуле Коши

где

где ci() определяются из системы уравнений

Определитель этой системы представляет собой определитель Вронского фундаментальной системы решений 1, …, n и поэтому не равен нулю. Эта система имеет единственное реше-ние c1(), …, cn(). Следовательно, решение x1(t, ) определяется единственным образом.

2.7.7. Линейное однородное дифференциальное уравнение с постоянными коэффициентами

Линейное однородное дифференциальное уравнение n-го порядка с постоянными коэффициентами имеет вид

(5)

Его решение будем искать в виде y=ekx. Тогда y'=kekx, y''=k2ekx, …, y(n)=knekx. Подставим это в исходное дифференциальное уравнение и получим так называемое характеристическое уравнение для дифференциального уравнения (5):

knekx+…+a2k2ekx+a1kekx+a0ekx=0

или, разделив это уравнение на ekx, так как он ни при каких x не равен нулю, получаем:

kn+…+a2k2+a1k+a0=0

Решив это уравнение относительно k, мы получим n корней, которые могут быть как действительными, так и мнимыми. В зависимости от вида корней характеристического уравнения мы будем иметь различные виды решения дифференциального уравнения:

1. Некоторые ki, …, kj из всего множества корней характеристического уравнения - действительные и различные числа. Тогда каждому km из этого множества будет соответствовать решение в виде: ym=cmekmx.

2. Некоторые ki,…, k2j - комплексные и различные. Тогда каждой паре km;m+1=ambmi будет соответствовать решение ym=cmeamxcos(bmx); ym+1=eamxsin(bmx).

3. Среди решений характеристического уравнения есть корень ki кратности m. Ему будут соответствовать решения: yi=ciekix, yi+1=xci+1ekix, …, yi+m=xm-1ci+mekix.

4. Среди решений характеристического уравнения есть 2 комплексных корня ki;i+1=aibii кратности m. Им будут соответствовать решения yi=cieaixcos(bix); yi+1=ci+1eaixsin(bix); yi+2=xci+2eaixcos(bix) ; yi+3=xci+3eaixsin(bix) ; … ; yi+m=x2m-1cieaixcos(bix); yi+m=x2m-1
ci+1eaixsin(bix).

Однако, как было сказано выше, совокупность всех решений {y(x)} образует линейное пространство размерности n, так как решения этой системы являются линейно-независимыми и образуют базис. Это значит, что линейная комбинация решений линейного дифференциального уравнения также будет являться решением. Следовательно, общее решение данного линейного однородного дифференциального уравнения n-го порядка (5) с постоянными коэффициентами можно представить как линейную комбинацию решений, соответствующих каждому корню (или паре корней) характеристического уравнения.

2.7.8. Линейное неоднородное дифференциальное уравнение

Линейное неоднородное дифференциальное уравнение имеет вид

y(n)+Pn-1(x)y(n-1)+…+P2y'+P1y+P0=f(x), (6)

где P0(x), P1(x),…, Pn-1(x), f(x) - некоторые непрерывные функции, непрерывные по x и удовлетворяющие условию Липшица по x. Соответствующее ему однородное дифференциальное уравнение имеет вид

y(n)+Pn-1(x)y(n-1)+…+P2y'+P1y+P0=0, (7).

Если дифференциальное уравнение (6) имеет частное решение yв(x) и общее решение yс=c1y1+c2y2+…+cnyn, то общее решение дифференциального уравнения (6) равно сумме частного решения yв и общего решения линейного однородного дифференциального уравнения (7) yc: y=yc+yв.

Методика нахождения общего решения линейного однородного уравнения была изложена выше. Здесь мы рассмотрим нахождение частного решения линейного неоднородного уравнения.

Частное решение будет зависеть от вида правой части f(x). В общем случае трудно найти частное решение для любой функции f(x). Однако на практике применяются следующие виды функции f(x):

1. f(x)=P(x)eax, где P(x) - некоторый многочлен. Тогда частное решение ищется в виде:

1) yч=xmQ(x)eax, если a - m-кратный корень характеристического уравнения;

2) yч=Q(x)eax, если a - не корень характеристического уравнения,

где Q(x) - многочлен той же степени, что и P(x), но с неопределенными коэффициентами.

2. f(x)=(Pn(x)cos(bx)+Lm(x)sin(bx))eax, где Pn(x) и Lm(x) - некоторые многочлены. Тогда частное решение ищется в виде:

1) yч=(Mn(x)cos(bx)+Nn(x)sin(bx))eax, если (abi) - не корень характеристического уравнения;

2) yч=xm(Mn(x)cos(bx)+Nn(x)sin(bx))eax, если (abi) - m-кратный корень характеристического уравнения,

где Mn(x) и Nn(x) - многочлены, степень которых равна наивысшей степени многочленов Pn(x) и Lm(x).

После выбора вида частного решения подставляем его в исходное дифференциальное уравнение. При этом неизвестные коэффициенты полиномов находим по методу неопределенных коэффициентов, который заключается в том, что неизвестные коэффициенты ищутся из условия равенства коэффициентов при одинаковых слагаемых, например, при x, при x2, при x3cos(bx) и т. д.

3. Дифференциальные уравнения при описании непрерывных систем

Страницы: 1, 2, 3



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.