на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Разработка анимационно-обучающей программы механической системы

Разработка анимационно-обучающей программы механической системы

Содержание

Введение

Глава 1. Механические системы и анимационное моделирование.

§ 1.1 Некоторые аспекты создания модели механической системы.

§ 1.1.1 Механические системы. Центр масс.

§ 1.1.2 Количество движения системы тел, закон сохранения количества движения

§ 1.1.3 Движение центра масс механической системы.

§ 1.1.4 Движение тел переменной массы. Уравнение Мещерского. Формула Циалковского.

§ 1.2 Некоторые задачи моделирования механических систем (на примере движение тела с переменной массой).

§ 1.3 Анимационное моделирование процесса обучения механических систем.

Глава 2. Анимационно - обучающий метод механической системы.

§ 2.1 Анимация механической системы.

§ 2.1.1 Обучающие программы.

§ 2.1.2 Описание установки.

§ 2.1.3 Алгоритмизация анимационно - обучающей механической системы.

§ 2.2 Инструкция пользования анимационно-обучающей программы “Water Program”

§ 2.3 Текст анимационно - обучающей программы механической системы.

Заключение.

Список использованной литературы.

Введение

При изучения двух тел закон движения одного или двух тел не исчерпывает всех возможных задач о механическом движений с которыми мы сталкиваемся при изучений природы и в технике. Не редко приходиться иметь дело с движением совокупности взаимодействующих между собой тел, или с движением как говорят механической системы. При изучения или обучения таких систем приходиться рассматривать процесс системно. То есть каждую часть этой системы надо представить эту систему в частности и в комплексе учитывая взаимодействие этих систем. Создание физических установок для изучения свойства этих систем является очень сложной задачи. Но с другой стороны с помощью анимационных методов компьютерного моделирования можно создать виртуальной установки свойств механических систем. Такие виртуальные установки при обучения играет не заменимую роль. Так как с помощью этого метода можно полностью не только изучить , но даже визуально представить внутренние движение механической системы. Тем самым можно сказать об актуальности создание таких установок. С другой стороны создание виртуальных установок связанно с созданием концептуальной модели механической системы. Это раз. Второе - алгоритмизации этой модели. Третье - компьютерной реализаций этих алгоритмов. В комплексе решение этих проблем является обязанностью любого информатика.

В принципе создание комплексной модели требует от информатика глубокого знания предложной области. А алгоритмизация выражает способность математическое мышление информатика. В принципе всегда основные анимационные методы заключается - искусственные представление движение в кино, на телевидение или в комплексной графике путем отображения последовательности рисунков или кадров частотой, при которой обеспечивается целостное зрительное восприятие образов. С другой стороны после создания виртуальной анимационной программы установки нам представляет разработки педагогических методов обучения на этой установке. Связи с этим создание анимационной обучающий программы для изучения движения тела с переменной массы является востребованной.

ГЛАВА1.МЕХАНИЧЕСКИЕ СИСТЕМЫ И АНИМАЦИОННЫЕ МОДЕЛИРОВАНИЕ

§ 1.1 Некоторые аспекты создания модели механической системы

§1.1.1 Механические системы. Центр масс

Мы при мы изучении взаимодействия двух тел и часто, рассматривая движение одного тела, заменяли другое, с которым первое взаимодействует, соответствующей силой. Но изучение законов движения одного или двух тел не исчерпывает всех возможных задач о механическом движении, с которыми мы сталкиваемся при изучении природы или в технике. Нередко приходится иметь дело с движением совокупности взаимодействующих между собой тел, или с движением, как говорят, механической системы . Пример механических систем : любая машина, тепловоз с вагонами, Солнце и планеты, ракетный поезд и т. п., а также любое тело, если в данной задаче его приходится рассматривать как совокупность частиц.

Если движение таково, что размеры и форма отдельных тел, образующих систему, не играют роли, то рассматривается задача о движении системы материальных точек.

Силы, действующие между телами системы, называются внутренними для данной системы силами.

Силы, действующие на тела системы со стороны тел, не входящих в данную систему, называются внешними силами.

Одна и та же сила в зависимости от постановки задачи может быть внутренней или внешней. Например, силы взаимного притяжения планет и Солнца - внутренние силы, если мы рассматриваем солнечную систему как целое, и внешние по отношению к каждой отдельно взятой планете, когда, скажем , мы решаем задачу о движении Земли и Луны, о приливных явлениях на поверхности Земли и т. п.

Под воздействием сил каждая из материальных точек системы, вообще говоря, как-то изменяет состояние своего движения, перемещаясь относительно других точек. Чтобы исследовать движение системы в целом, надо, очевидно, исследовать движение каждой ее точки. Мы могли бы воспользоваться для этого законами Ньютона, составить уравнения движения каждой точки системы и решить их. Но такой путь решения задачи о движении системы часто оказывается весьма сложным либо вследствие того, что трудно определить внутренние силы в виде известной функции (например, при быстро протекающих взаимодействиях тел типа удара), либо потому, что исследуемая система состоит из очень большого числа материальных точек (например, при исследовании движения некоторого объема жидкости). Однако в ряде случаев, как увидим дальше, оказывается возможным обойти эти затруднения.

Введем понятие центра масс системы тел. В элементарной физике вводится понятие центра тяжести как точки приложения равнодействующей сил тяжести, действующих на элементы тел. Введем более общее понятие, не зависящее от силы тяжести центр масс системы. Центром масс двух материальных точек называется точка, делящая расстояние между ними в отношении, обратно пропорциональном их массам (рис. 1.). усть имеем две материальные точки массой m1 и m2, координаты которых в неподвижной системе отсчета соответственно x1, y1, z1 и x2, y2, z2. По известному правилу аналитической геометрии координаты точки x, y, z, делящей отрезок в заданном отношении

Связаны с координатами концов отрезка следующим соотношением.

Решая эти равенства относительно x, y, z, получим:

Центром масс трех материальных точек называется точка, которая делит расстояние между центром масс двух из них и третьей точкой в отношении, обратно пропорциональном сумме масс двух первых и массе третьей из них.

Легко получить координаты центра масс трех материальных точек, подобно тому как это сделано выше для двух точек:

m2=2

m1=1

m3=12

Рис.1. К определению центра масс материальных точек:

-центр масс m1 и m2;

- центр масс m1, m2 и m3;

Прибавляя к системе четвертую, пятую и т. д. точки, получим, что координаты центра масс системы n материальных точек:

§ 1.1.2 Количество движения системы тел. Закон сохранения количества движения

Рассмотрим действие друг на друга двух изолированных тел не взаимодействующих с другими телами. Будем считать силы во все время взаимодействия постоянными. В соответствии со вторым законом динамики изменение количества движения первого тела:

где - интервал времени взаимодействия .

Изменение количества движения второго тела:

где -сила, действующая со стороны первого тела на второе.

Согласно третьему закону Ньютона

и, кроме того, очевидно,

Следовательно,

или

Независимо от природы сил взаимодействия и длительности их действия общее количество движения двух изолированных тел остается постоянным.

Полученный результат может быть распространен на любое число взаимодействующих тел и на силы, меняющиеся со временем. Для этого интервал времени в течение которого происходит взаимодействие тел, разобьем на столь малые промежутки в течение каждого из которых силу можно с заданной степенью точности считать постоянной. В течение каждого промежутка времени будет выполняться соотношение (1.8). Следовательно, оно будет справедливо и для всего интервала времени

Для обобщения вывода на взаимодействующих тел введем понятие замкнутой системы.

Замкнутой называется система тел, для которой результирующая внешних сил равна нулю.

Пусть материальных точек массами образуют замкнутую систему. Изменение количества движения каждой из этих точек в результате взаимодействия ее со всеми остальными точками системы соответственно:

Обозначим внутренние силы, действующие на точку массой со стороны других точек , через на точку массой и т. д. (Первый индекс обозначает точку, на которую действует сила; второй индекс указывает точку, ос стороны которой действует сила. )

Запишем в принятых обозначениях второй закон динамики для каждой точки в отдельности:

Число уравнений равно числу тел системы. Чтобы найти общее изменение количества движения системы, нужно подсчитать геометрическую сумму изменений количества движения всех точек системы. Просуммировав равенства (1.9), мы получим в левой части полный вектор изменения количества движения системы за время, а в правой части - элементарный импульс результирующей всех сил, действующих в системе. Но так как система замкнута, то результирующая сил равна нулю. В самом деле, по третьему закону динамики каждой силе в равенствах (1.9) соответствует сила причем

т. е. и т. д.,

и результирующая этих сил равна нулю. Следовательно, во всей замкнутой системе изменение количества движения равно нулю:

или

=const. (1.11)

полное количество движения замкнутой системы - величина постоянная во все время движения (закон сохранения количества движения).

Закон сохранения количества движения - один из фундаментальных законов физики, справедливый как для систем макроскопических тел, так и для систем, образованных микроскопическими телами: молекулами, атомами и т. п.

Если на точки системы действуют внешние силы, то количество движения, которым обладает система, изменяется.

Напишем уравнения (1.9), включив в них результирующие внешних сил действующих соответственно на первую, вторую и т. д. До -й точки:

Сложив левые и правые части уравнений, мы получим: слева - полный вектор изменения количества движения системы; справа - импульс результирующей внешних сил:

или, обозначая результирующую внешних сил :

т. е.

изменение полного количества движения системы тел равно импульсу результирующей внешних сил.

Равенство (1.13) может быть записано в другом виде:

т. е.

производная по времени от общего количества движения системы точек равна результирующей внешних сил, действующих на точки системы.

Проецируя векторы количества движения системы и внешних сил на три взаимно перпендикулярные оси, вместо векторного равенства (6.14) получим три скалярных уравнения вида:

Если вдоль какой-либо оси, скажем , составляющая результирующей внешних сил равна нулю, то количество движения вдоль этой оси не изменяется, т. е., будучи вообще незамкнутой, в направлении система может рассматриваться как замкнутая.

Мы рассмотрели передачу механического движения от одних тел к другим без перехода его в другие формы движения материи.

Величина «mv оказывается здесь мерой просто перенесенного, т. е. продолжающегося, движения… ».

Применение закона изменения количества движения к задаче о движении системы тел позволяет исключить из рассмотрения все внутренние силы, что упрощает теоретическое исследования и решения практических задач.

1.Пусть на покоящейся тележке неподвижно стоит человек (рис. 2. а). Количество движения системы человек - тележка равно нулю. Замкнута ли эта система? На нее действуют внешние силы - сила тяжести и сила трения между колесами тележки и полом. Вообще говоря, система не замкнута. Однако, поставив тележку на рельсы и соответствующим образом обработав поверхность рельсов и колес, т. е. значительно уменьшив трение между ними, можно силой трения пренебречь.

Сила тяжести, направления вертикально вниз, уравновешивается реакцией деформированных рельсов, и результирующая этих сил не может сообщить системе горизонтального ускорения, т. е. не может изменить скорость, а следовательно, и количество движения системы. Таким образом, мы можем с известной степенью приближения считать данную систему замкнутой.

Положим теперь, что человек сходит с тележки влево(рис. 2. б), имея скорость . Чтобы приобрести эту скорость , человек должен, сократив свои мышцы, подействовать ступнями ног на площадку тележки и деформировать ее. Сила, действующая со стороны деформированной площадки на ступни человека, сообщает телу человека ускорение влево, а сила, действующая со стороны деформированных ступней человека (в соответствии с третьим законом динамики), сообщает тележке ускорение вправо. В результате, когда взаимодействие прекратится (человек сойдет с тележки), тележка приобретает некоторую скорость .

Страницы: 1, 2, 3, 4



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.