на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Система Mathcad
p align="left">Эта операция позволяет разложить полиномы на произведение более простых полиномов, а целые числа - на простые сомножители.

В вышеприведенном примере местозаполнитель после ключевого слова factor надо удалить.

4. Collect (приведение подобных слагаемых ).

После ключевого слова collect допускается задание нескольких переменных через запятую. В этом случае приведение подобных слагаемых выполняется последовательно по всем переменным.

5. Polynomial Coefficients (коэффициенты полинома)

Если выражение является полиномом относительно некоторой переменной х, заданным не в обычном виде , а как произведение других, более простых полиномов, то коэффициенты легко определяются символьным процессором MathCAD. Коэффициенты сами могут быть функциями других переменных. Результатом выполнения данной команды является вектор, состоящий из полиноминальных коэффициентов , причем первым элементом вектора является свободный член .

6. Ряды и произведения.

Шаблоны для ввода сумм и произведений находятся на панели Calculus. Там же находится символ .

Если в пределы сумм и произведений входят только числа, то можно применить знак = (численный расчет сумм и произведений). Если в предел входит , то можно решить только символьно.

7. Convert to Partial Fractions (Разложение на элементарные дроби)

8. Substitute (подстановка переменной)

9. Матричная алгебра

Символьно можно осуществлять следующие матричные операции:

- Transpose (транспонирование)

- Invert (Обратная матрица)

- Determinant (Определитель)

Аналогично производятся две другие матричные операции.

Математический анализ.

Наиболее ярким проявлением возможностей символьного процессора являются аналитические вычисления пределов, производных, интегралов и разложений в ряд, а также символьное решение алгебраических уравнений и неравенств, систем алгебраических уравнений.

1. Пределы последовательностей и функций.

Вычисление пределов является одной из основных задач математического анализа. Система MathCAD позволяет с высокой эффективностью находить любые пределы.

Операторы MathCAD для вычисления пределов расположены на панели Calculus. Данная панель содержит три кнопки:

Two-sided Limit (двухсторонний предел), Left-sided Limit (левосторонний предел) и Right-sided (правосторонний предел), при нажатии на которые появляются соответственно

Необходимо помнить, что пределы, в отличие от большинства математических операций в MathCAD, можно вычислить только в символьном виде, а при попытке вычислить предел численно (с помощью знака “=”) будет выдано сообщение об ошибке.

Предел последовательности. Фактически предел последовательности, если он существует, - это число, к которому приближаются элементы последовательности при значении индекса n, стремящегося к . Для вычисления предела последовательности надо ввести шаблон для двухстороннего предела, заполнить его, затем ввести соответствующую команду из символьного меню или знак символьного вывода .

Если последовательность не имеет предела, то будет выдано слово undefined (не определено).

Знак символьного вывода позволяет использовать функцию пользователя.

Предел функции в точке. Необходимость вычисления пределов функции возникает в задачах даже чаще, чем пределов последовательностей. В точках, где функция непрерывна, все три предела будут иметь одинаковое значение - значение функции в этой точке.

Но во многих задачах можно столкнуться с функциями, значение которых в тех или иных точках с формальной математической точки зрения не определено (особые точки типа 0/0 или /, точки разрыва функции). Для того, чтобы получить правильное значение функции в особой точке, следует вычислить ее предел в этой точке. При вычислении пределов в особых точках также используется двухсторонний предел.

Как видно из вышеприведенного примера, значения функций f(x) и g(x) в точке x равно 0. Это происходит потому, что MathCAD вычисляет вначале числитель, и если он равен 0, то и всей дроби присваивается значение 0, знаменатель даже не вычисляется.

Если возникает необходимость построить график функции, которая содержит особую точку, то из-за упомянутой выше особенности MathCAD при вычислении дробей график будет содержать дефект. Исправить эту ошибку и получить правильный график на всем интервале можно, если при вычислении функции в особой точке заменить значение функции на значение предела. Это можно сделать с помощью встроенной функции If.

Для анализа точек разрыва служат односторонние пределы. В точках разрыва не определено не только значение самой функции, но и значение ее двухстороннего предела. Поэтому для исследования точек разрыва функции вычисляют левый и правый пределы в этой точке.

2. Дифференцирование.

Применение MathCAD для дифференцирования функций может не только сэкономить время и силы, но и избежать возможных ошибок, неизбежно возникающих при сложных ручных расчетах. Система MathCAD позволяет производить дифференцирование функций как в символьном виде, так и численно.

Символьное дифференцирование можно осуществить тремя способами:

1. Вставить шаблон из панели Calculus, заполнить его и применить команду из меню

Symbolics/Simplify или Symbolics/Evaluate/Symbolically

2. Вставить шаблон из панели Calculus, заполнить его и применить команду символьного вывода или ключевое слово simplify c панели Symbolics (кардинальская шапка);

3. Набрать выражение для функции, выделить переменную, по которой необходимо провести операцию дифференцирования и дать команду из меню

Symbolics/Variable/Differentiate.

В вышеприведенном примере показано и численное дифференцирование функции в точке x=2, при этом символьная производная запоминается в функции D(x), затем происходит обращение к этой функции и дается команда численного вычисления (знак “=”). Для численного дифференцирования MathCAD применяет довольно сложный алгоритм Риддера, вычисляющий производную с колоссальной точностью до 7-8 знака после запятой. Существенно, что погрешность дифференцирования не зависит от констант TOL и CTOL, в противоположность большинству остальных численных методов, а определяется непосредственно алгоритмом.

Возможности MathCAD позволяют продифференцировать любую непрерывную функцию, но иногда возникает необходимость находить производную от функции вблизи точки разрыва. В математике для дифференцирования функции вблизи точки разрыва используют операцию односторонней производной. В MathCAD нет встроенных операторов для вычисления односторонних производных, но вычислить их все-таки можно. Для этого следует скомбинировать оператор обычной производной с операторами односторонних пределов, как это сделано в нижеприведенном примере

Производные высших порядков. Для вычисления производных высших порядков в MathCAD предусмотрен специальный оператор на панели Calculus. Шаблон этого оператора содержит на два поля ввода больше, чем оператор обычной производной. В эти два поля может быть вписан порядок производной, причем достаточно ввести значение в одном из них, а в другом оно появится автоматически. Производные высших порядков можно вычислять и в символьном виде, и численно, но при численных расчетах вы можете вычислить производную не выше пятого порядка. Это связано с тем, что используемый алгоритм численного дифференцирования очень быстро теряет точность при росте порядка производной. В символьном же виде вычисление производных высших порядков производится так же просто и точно, как и производной первого порядка.

Частные производные. С помощью обоих процессоров MathCAD можно вычислять производные функций любого количества аргументов. В этом случае, как известно, производные по разным аргументам называются частными. Чтобы вычислить частную производную, необходимо, как обычно, ввести оператор производной с панели Calculus и в соответствующем местозаполнителе напечатать имя переменной, по которой должно быть осуществлено дифференцирование. Для того, чтобы изменить вид оператора дифференцирования на представление частной производной, необходимо выбрать из контекстного меню для области оператора дифференцирования пункт View Derivative As (Изображать производную как), в появившемся подменю выбрать пункт Partial Derivative (Частная производная).

Частные производные высших порядков рассчитываются точно так же, как и обычные производные высших порядков.

3. Интегрирование.

Как и большинство математических операций, интегрирование в MathCAD может проводиться как численно, так и в символьном виде. Каждый способ вычислений имеет свои преимущества и недостатки и, в отличие от дифференцирования, здесь нельзя сказать однозначно, как лучше всего проводить вычисления. Какой способ интегрирования вы выберите для той или иной функции в своих задачах, будет зависеть от вашего опыта, интуиции, а также требований конкретной задачи.

Численное интегрирование. Численно можно вычислить с большей или меньшей точностью любой сходящийся определенный интеграл с конечными или бесконечными пределами интегрирования. Пределы интегрирования обязаны быть действительными, подынтегральная функция может иметь и комплексные значения, поэтому и значение интеграла может быть комплексным.

Для вычисления определенного интеграла надо вставить в документ шаблон оператора определенного интеграла с панели Calculus. После заполнения всех полей ввода для вычисления интеграла следует ввести знак “=”.

При численном интегрировании основная проблема состоит в том, что интегрирование с высокой точностью сложных функций требует значительного времени. В таких случаях приходится искать компромисс между точностью и скоростью расчета. В MathCAD вы сами можете контролировать точность проводимых вычислений. Для этого служит встроенная переменная TOL. Но нельзя сказать однозначно, какой будет точность вычисления того или иного интеграла при заданном значении TOL. Все численные методы интегрирования в MathCAD строятся на последовательных приближениях, и значение переменной TOL указывает, какой должна быть разница между двумя последовательными приближениями для остановки вычислений. Поэтому не стоит воспринимать значение этой переменной как точность вычисления интеграла, можно лишь с уверенностью сказать, точность будет не ниже значения TOL. Также следует помнить, что слишком низкое значение TOL может привести к тому, что MathCAD не сможет вычислить интеграл и выдаст ошибку, поэтому для большинства однократных интегралов значение TOL лучше выбирать в диапазоне 10-310-4.

Точность численного интегрирования также зависит от численного метода, который используется для вычисления интеграла. Существует великое множество различных численных методов интегрирования, и для того или иного интеграла сложно заранее определить, каким методом его можно вычислить наиболее быстро и точно. В MathCAD встроено несколько основных методов численного интегрирования. Каждый из этих методов предназначен для своего класса интегралов. По умолчанию MathCAD автоматически выбирает тот или иной метод в зависимости от введенной подынтегральной функции и границ интегрирования (вариант Auto Select). При желании можно выбрать численный метод вручную, но в большинстве случаев это только ухудшит результат. Для того, чтобы выбрать численный метод для вычисления интеграла, вызовите его контекстное меню, которое содержит кроме стандартных команд, еще и команды выбора численного метода.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.