на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Электроаналитические методы

Электроаналитические методы

Вступление

Электрохимические методы используются довольно часто, поскольку они позволяют получить богатую экспериментальную информацию о кинетике и термодинамике многих химических систем. Вследствие многообразия, высокой чувствительности и точности результатов, безынерционности, быстроте проведения анализа и возможности автоматизации электрохимические методы анализа давно и плодотворно применяют в химии, биологии, медицине и в мониторинге объектов окружающей среды.

Все электрохимические методы анализа и исследования основаны на изучении и использовании процессов, протекающих на поверхности электрода или в приэлектродном слое. Любой электрический параметр (потенциал, сила тока, сопротивление и др.), функционально связанный с концентрацией определяемого компонента и поддающийся правильному измерению, может служить аналитическим сигналом.

В соответствии с областями измерений электрохимические методы анализа делят на пять групп: потенциометрические, вольтамперометрические, кулонометрические и кондуктометрические. Инструментальный базис и теоретические основы этих методов развиты до такой степени, что они легко могут применяться даже неспециалистами. Однако в настоящее время следует отметить невосприятие электроаналитических методов теми людьми, которые не имеют опыта их применения и в недостаточной степени знакомы с электрохимией.

В работе будут рассмотрены только важные электроаналитические методы вместе с наиболее существенной информацией о возможности их применения потенциальными пользователями. В своем реферате я поставила следующие цели:

· Рассмотреть наиболее важные электроаналитические методы

· Выяснить пригодность каждого метода для определения различных ионов

· Рассмотреть достоинства и недостатки каждого метода

1. Потенциометрия

Известно, что потенциал электрода может меняться при изменении активности или концентрации одного или нескольких веществ в растворе, в который он погружен. Таким образом, измеряя потенциал можно получить количественную характеристику о составе раствора. Потенциометрические методы заключаются в измерении разности потенциалов между парой подходящих электродов, опущенных в анализируемый раствор.

Установка для измерения разности потенциалов состоит из индикаторного электрода, электрода сравнения, анализируемого раствора и потенциометра. Подключая электроды к соответствующим клеммам измерительного прибора, мы получаем возможность измерения разности потенциалов между двумя электродами или, как говорят аналитики, измеряем потенциал индикаторного электрода относительно электрода сравнения.

1.1 Индикаторные электроды

Известны два основных типа индикаторных электрода для потенциометрических измерений: металлические и мембранные электроды.

Металлические электроды можно изготавливать из различных металлов (Ag, Cu, Hg, Pb, Cd) способных давать обратимые реакции. Некоторые металлы (Al, Ni, Co, W, Cr) не могут быть использованы в качестве индикаторных, так как на их поверхности присутствуют окисные пленки либо дефекты кристаллической структуры, что приводит к получению плохо воспроизводимых потенциалов.

Мембранные индикаторные электроды бывают четырех видов:

1) электроды со стеклянными мембранами;

2) электроды с жидкими или пленочными мембранами;

3) электроды с твердыми мембранами;

4) электроды с газочувствительными мембранами.

Расчет потенциала металлических электродов

Электроды I рода (рис. 1.1) представляют собой металлическую проволоку или пластинку, опущенную в раствор соли. Пример:

;

Рисунок 1.1 - Электрод I рода

Металлические индикаторы І рода используют в анализе катионов металлов, чаще всего при потенциометрическом титровании.

Электроды ІІ рода (рис. 1.2) - металлическая проволока или пластинка, находящаяся в контакте с малорастворимым соединением катиона металла и опущенная в раствор соли, содержащей анионы малорастворимого соединения.

Рисунок 1.2 - Электрод ІІ рода

Электроды ІІ рода используют в качестве индикаторных, для определения активности концентрации анионов то есть когда его используют как индикаторный.

1.2 Электроды сравнения

1) Хлоридсеребрянные электроды

2) Каломельные электроды

1.3 Мембранные индикаторные электроды

А) Стеклянные мембранные электроды

Оказалось, что измерить рН раствора наиболее удобно с использованием стеклянного мембранного электрода, содержащего мембрану, разделяющую два раствора с различной активностью ионов водорода.

Состав стекла, кроме основного компонента SiO2 содержит оксиды щелочных и щелочноземельных металлов, что позволяет такой мембране участвовать в равновесном объеме ионами водорода в анализируемом растворе. «Corning»: 72% SiO2, 22% CaO, 6% Na2O (H2O, K2O).

Стеклянный электрод изготавливают путем припаивания тонкого наконечника шарика из рН-чувствительного стекла к концу толстостенной стеклянной трубки заполненной раствором HCl с активностью ионов водорода равной единице (). В раствор погружают серебряную проволоку покрытую AgCl. Таким образом, - внутренний электрод сравнения. Ячейка для измерения рН содержит стеклянную рН-чувствительную мембрану, которая разделяет раствор, в который опущен электрод сравнения и внешний анализируемый раствор с опущенным внешним электродом сравнения, чаще всего хлоридсеребрянным.

Схема потенциометрической ячейки для измерения рН

Потенциал мембраны представляет собой разность потенциалов, которая формируется на внешней и внутренней поверхности мембраны за счет ионного обмена.

Потенциал ячейки будет определяться потенциалами двух электродов сравнения; потенциалом мембраны и еще одной величиной, которую называют потенциалом ассиметрии.

Потенциал ассиметрии возникает даже в случае, если мы используем совершенно идентичные внешние и внутренние электроды сравнения.

Появление этой величины связывают с различным диаметром внешней и внутренней поверхности шарика, что может привести к различным напряжениям в стеклянной матрице мембраны и соответственно к различной скорости обмена ионами водорода на внешней и внутренней поверхности мембраны.

По мере использования электрода наружная рабочая поверхность шарика загрязняется молекулами различных веществ, что приводит к повышению потенциала ассиметрии и соответственно погрешностям в измерении величины рН. Потому необходимо тщательно отмывать стеклянный электрод после погружения его в растворы сложного состава рН 5,5?6,0.

Сам процесс обмена ионами водорода между раствором и стеклянной мембранной осуществляется в тонком гелевом слое, который образуется на обеих поверхностях мембраны при выдерживании электрода в дистиллированной воде.

При выдерживании стеклянного электрода в воде в гелевом слое образуются так называемые силанольные группы .

Если выдержать мембрану в растворе соляной кислоты определенной концентрации, ионы водорода, проникая в поры мембраны, образуют связь с неподеленной парой кислорода силанольной группы.

Наличие неподеленной пары для атома кислорода силанольной группы позволяет ионам водорода, протекающим извне образовывать связь -O:H+. Именно для того, чтобы мембрана стеклянного электрода насытилась ионами Н+, электрод вымачивают в течение нескольких дней в растворе 0,1М HCl и именно эти ионы участвуют потом в ионном обмене при опускании электрода в анализируемый раствор. В более старых теориях формирования потенциала рН-чувствительной мембраны оговаривалось, что ионы Н+ из анализируемого раствора эквивалентно обменивается с ионами щелочных металлов из матрицы мембраны.

Перечисленные теории объясняют физический смысл операций, которые необходимо проводить со стеклянным электродом для получения удовлетворительных и воспроизводимых результатов измерения.

1. «Вымачивание» нового электрода в 0,1М растворе HCl не менее трех дней.

2. Хранение рабочих электродов исключительно в Н2Одист рН 5,5?6,0

В области сильнокислых (рН<1) и сильнощелочных (рН>12) растворов возможно появление ошибок в измерении величины рН. Так называемая щелочная ошибка (рН>12) связана с участием в формировании потенциала электрода ионов Na+ или К+, которые также способны участвовать в ионном обмене. Ошибки измерения рН в сильнокислой среде (рН<1) обусловлены тем, что теоретические расчеты рН сильнокислых растворов необходимо проводить с учетом функции Гамета, поскольку заметный избыток ионов Н+ в сильнокислом растворе требует использования дополнительных буферных растворов.

Б) Мембранные электроды с жидкими мембранами

Применение жидких мембран основано на том, что они обладают потенциалом, устанавливающемся на поверхности между анализируемым раствором и несмешивающейся жидкостью селективно реагирующей с анализируемым ионом. Электроды с жидкими мембранами позволяют проводить прямые потенциометрические определения некоторых многозарядных катионов, а также ряда анионов. Электрод с жидкой мембраной отличается от стеклянной мембраны только тем, что растворы с известной и неизвестной активностью анализируемого иона разделены не стеклянной мембраной, а тонким слоем несмешивающейся органической жидкости. Вариантом таких электродов являются электроды с пленочными мембранами. Мембрана такого электрода представляет собой - тонкую полимерную пленку, в которой равномерно распределяется ионообменник, то есть соединение, содержащее анализируемый ион.

В) Электроды с твердыми мембранами

Селективность стеклянной мембраны обусловлено наличием анионных пустот (например, пара у атома кислорода) обладающим определенным сродством к положительно заряженным ионам. Аналогично, можно сказать, что мембраны, имеющие катионные пустоты будут обладать селективностью к анионам. Были изготовлены мембраны в виде таблеток из кристаллов солей малорастворимых соединений. Чтобы изготовить такую твердую мембрану необходимо вырастить монокристалл соответствующей соли.

Г) Электроды с газочувствительными мембранами

Газочувствительная мембрана представляет собой тонкую газопроникающую керамическую мембрану, которая разделяет внутренний раствор с известной активностью определяемого иона и внешний анализируемый раствор. Тонкие микропористые мембраны изготавливаю из гидрофобного пластика. Потенциал формируется за счет обмена молекулами газа между анализируемым раствором и мембраной. Применяют в анализе SO2, SO3, Cl2, NH3CO.

1.4 Прямая потенциометрия

Метод достаточно прост и состоит в сравнении потенциала индикаторного электрода в растворе определенного вещества с потенциалом его же электрода, погруженный в стандартный раствор его же вещества.

В аналитической практике для определения концентрации используют метод сравнения со стандартом, метод градировочного график, метод добавок.

Метод добавок позволяет анализировать достаточно разбавленные растворы, что заметно расширяет применимость прямой потенциометрии.

Ионометрия или прямая потенциометрия с применением ионоселективных электродов

Ионоселективным электродом (ИСЭ) называется электрохимический полуэлемент, в котором разность потенциалов на границе раздела фаз электродный материал - электролит зависит от концентрации (активности) определяемого иона в растворе. В большинстве своем ИСЭ это мембранные электроды.

Химико-аналитические характеристики ИСЭ

1. Электродная функция - зависимость потенциала ИСЭ от отрицательного логарифма концентрации стандартных растворов (рС).

Для построения графика электродной функции ИСЭ измеряют потенциал электрода в зависимости от концентрации стандартных растворов, которая отличается чаще всего на порядок: 10
-1; 10-2; 10-3; 10-4; 10-5.

2. Крутизна электродной функции - тангенс угла наклона линейного участка электродной функции и оси х.

Точность определения с данным ИСЭ будет зависеть от того, насколько крутизна полученной электродной функции отличается от Нернстовской зависимости.

Для однозарядного иона при 25°С ; для двухзарядного иона

3. Дрейф потенциала определяется путем изменения потенциала электрода в одном и том же растворе в течение 24 часов.

4. Время отклика - промежуток времени между моментом опускания электрода в раствор и моментом установления равновесного «стационарного» потенциала желательно, чтоб время отклика не превышала 5 минут.

5. Коэффициент селективности - показатель, отражающий влияние мешающих ионов в растворе на потенциал ИСЭ.

Уравнение Никольского

Влияние мешающих ионов на формирующийся потенциал ИСЭ описывает уравнение Никольского, вытекающее из эмпирического уравнения Нернста.

Уравнение Никольского

const - эмпирическая величина, определяемая для каждого ИСЭ, отрезок, на основании потенциалов, отсекаемый функцией;

+ в случае определения катионов, - в случае определения анионов;

zx - заряд определяемо иона, zy - заряд мешающего иона;

ax - активность определяемого иона, ау - активность мешающего иона;

Кх/у - коэффициент селективности определяемый ион - мешающий ион. Коэффициент селективности показывает, при каком избытке мешающего иона мы можем получить 100% погрешность в определении анализируемого иона.

Методы определения коэффициентов селективности ИСЭ

Оказалось, что численные значения коэффициентов селективности можно определить достаточно приблизительно так как они зависят от состава раствора, от содержания ионообменника в матрице мембраны и кроме того от метода определения.

Для простоты экспериментального определения коэффициентов селективности и описания методов их определения рассматривают два иона с одинаковым зарядом А
+, В+. Коэффициент селективности КА/В может быть рассчитан на основании ЭДС гальванического элемента с мембраной в растворах содержащий либо каждый из этих ионов по отдельности, либо смесь этих двух ионов.

В соответствии с этим имеются две группы методов:

I. Определение коэффициентов селективности на основе чистых растворов, один из которых содержит только ионы А+, а второй - только ионы В+.

II. Определение коэффициентов селективности на основе смешанных растворов.

Страницы: 1, 2, 3, 4



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.