на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Электроаналитические методы
группа методов

I. а) Для количественного определения коэффициентов селективности используется гальванический элемент следующего вида:

Если мы опускаем ИСЭ в раствор, который содержит только ионы А+, то

Если мы опускаем электрод в раствор, где отсутствует ион А+, а присутствует только ион В+ ()

Если мы будем опускать ИСЭ в растворы иона А и В одинаковой активности, выражение упрощается

n - появляется в том случае, если степень окисления определяемого иона отличается от единицы.

Метод I.б

В этом методе подбирают активности таким образом, чтобы потенциалы электродов в этих растворах были одинаковыми.

Если степени окисления основного и мешающего иона отличаются от единицы, в выражении появляется заряд (z).

В том случае, если заряд определяемых частиц установить невозможно рекомендуют методы II группы.

Метод IIa. Готовят серию стандартных растворов с постоянным содержанием мешающего иона В и переменной концентрацией основного иона А (смешанные растворы) и строят график зависимости измеренного потенциала ИСЭ от lg активности определяемого иона. Этот метод считается наиболее точным.

Метод IIб. В этом случае используют разницу потенциалов ИСЭ измеренных в смешанном растворе А+В и в чистом растворе А.

Различия в коэффициентах селективности определенных разными методами могут быть значительными до порядка величины, особенно при сравнении значений полученных методами первой и второй группы. Поэтому чаще всего выбирают метод IIa как наиболее отвечающий ситуации одновременного присутствия определяемого и мешающего ионов в растворе.

Классификация ИСЭ по ИЮПАК

І. Первичные электроды

І.1. Кристаллические электроды бывают гомогенные и гетерогенные

а) Гомогенные мембранные электроды - ИСЭ, в которых в качестве мембраны используют кристаллический материал, изготовленный из одного соединения или из гомогенной смеси соединений Ag2S или AgI.

б) Гетерогенные мембранные электроды образуются, когда активное вещество или смесь активных веществ смешивают с инертной матрицей (например, с силиконовой смолой или с поливинилхлоридом) или наносят на гидрофобизированный графит, получая гетерогенную мембрану с высокой чувствительностью.

І.2. Некристаллические электроды с матрицей, в которой определенным образом распределено ионогенное вещество (анионного или катионного типа) или незаряженное вещество, которое образует ионоселективную мембрану, чаще всего находящуюся между двумя водными растворами.

I.3. Электроды с жесткой матрицей, например стеклянные ИСЭ в которых сенсором (чувствительным элементом) служит тонкая стеклянная мембрана. Селективность мембраны определяется химическим составом стекла. К таким электродам относятся Н+ - чувствительные электроды и электроды, селективные к однозарядным катионам Na+, K+.

II. Электроды с подвижным носителем.

II.1. Позитивно заряженные носители: катионы большого размера (например четвертичные аммониевые основания) или комплексные ионы переходных металлов, которые после растворения в соответствующем растворителе и нанесении на инертную подложку образуют мембраны чувствительные к активности аниона.

II.2. Негативно заряженные носители вещества, способные к комплексообрзованию, например (RO2)PO2-, где R - ион металла или анионы больших размеров, которые после растворения в соответствующем растворителе и нанесении на инертную подложку образуют мембраны, чувствительные к катионам.

II.3. Незаряженные носители. Используются в электродах, мембраны которых содержат растворы молекулярных носителей катионов макроциклических соединений, например антибиотики.

III. Сенсибилизированные (активированные) электроды - электроды чувствительные к газам или газочувствительные сенсоры. Существуют электроды, которые объединяют в себе индикаторный электрод и электрод сравнения. В них используются мембраны, через которые могут проникать газы. В некоторых таких электродах используют воздушный зазор для разделения анализируемого раствора и тонкой пленки промежуточного электролита. Этот промежуточный раствор взаимодействует с газовыми веществами таким образом, что при этом изменяется какой либо параметр промежуточного раствора (например рН). Измерение параметра контролируется дополнительным ИСЭ.

Химические сенсоры

Необходимость постоянного мониторинга многих объектов требует наличие портативных, миниатюрных устройств и способных моментально выдавать информацию об анализируемом объекте.

Все сенсоры делят на две большие группы:

1. Физические сенсоры, реагирующие на такие факторы как температура, давление, магнитное поле и силы, не являющиеся предметом химии.

2. Химические сенсоры, реагирующие на специфические химические реакции, в том числе и биохимические. В общем случае химический сенсор - устройство, избирательно реагирующее на конкретный химический объект путем химической реакции, которую которое можно использовать для количественного или качественного определения аналита.

Любой химический сенсор состоит из двух компонентов:

1 - собственно блок, где происходит химическая реакция;

2 - преобразователь (трансдьюсер).

Химические сенсоры делят на ряд групп в зависимости от типа преобразователя.

1) Электрохимические сенсоры: потенциометрические, вольтамперометрические.

Потенциометрические сенсоры или ионоселективные полевые транзисторы используют метод прямой потенциометрии для проведения измерений.

Вольтамперометрические или амперометрические сенсоры используют зависимость силы тока от поданного на систему потенциала, для контроля содержания определяемого компонента.

2) Оптические сенсоры. Спектроскопическое определение в оптических сенсорах связано с химической реакцией. В настоящее время оптические сенсоры называю оптодатчиками. В зависимости от типов оптических сенсоров в них измеряют поглощение, отражение света или люминесценцию.

3) Массчувствительные

4) Теплочувствительные. Сенсоры, относящиеся к этой группе часто называют калориметрическими, так как они используют тепловой эффект химической реакции.

В отдельную группу часто выделяют биосенсоры, то есть устройства позволяющие контролировать биологически активные компоненты на основе высокоселективных биохимических реакций. В этом виде сенсоров чаще всего применяют электрохимические и оптические трансдьюсеры.

1.5 Потенциометрическое титрование

Потенциометрическое титрование используют в тех случаях, когда применение цветных индикаторов не возможно: титрование сильно окрашенных, мутных растворах и смесей. В случае потенциометрического титрования важным является выбор индикаторного электрода. При кислотно-основном титровании используется стеклянный рН-чувствительный электрод. При осадительном титровании используют металлические электроды первого или второго рода. При титровании органических соединений методом осаждения используют ИСЭ. При окислительно-восстановительном титровании используют платиновый инертный окислительно-восстановительный электрод. В случае комплексонометрического титрования используют электроды второго и третьего рода.

Конечную точку титрования определяют по резкому изменению (скачку) потенциала.

Точка эквивалентности при потенциометрическом титровании определяется графически по одному из четырех графиков (рис. 1.3)

Рисунок 1.3 - Кривые потенциометрического титрования: а - обычная кривая; б - дифференциальная кривая; в - кривая титрования по второй производной; г - кривая Грана

1.6 Общая характеристика метода

Основными достоинствами потенциометрического метода являются его высокая точность, высокая чувствительность и возможность проводить титрования в более разбавленных растворах, чем это позволяют визуальные индикаторные методы. Необходимо отметить также возможности определения этим методом нескольких веществ в одном растворе без предварительного разделения и титрования в мутных и окрашенных средах. Значительно расширяется область практического применения потенциометрического титрования при использовании неводных растворителей. Они позволяют, например, найти содержание компонентов, которые в водном растворе раздельно не титруются, провести анализ веществ, нерастворимых или разлагающихся в воде и т.д. Немаловажным достоинством потенциометрии является также возможность автоматизировать процесс титрования.

К недостаткам потенциометрического титрования можно отнести не всегда быстрое установление потенциала после добавления титранта и необходимость во многих случаях делать при титровании большое число отсчетов.

2. Вольтамперометрия

Вольтамперометрия основана на изучении поляризационных или вольтамперных кривых (кривых зависимости силы тока I от напряжения Е), которые получают в процессе электролиза раствора анализируемого вещества при постепенном повышении напряжения с одновременной фиксацией при этом силы тока. Электролиз проводят с использованием легкополяризуемого электрода с небольшой поверхностью, на котором происходит электровосстановление или электроокисление вещества.

2.1 Полярография

Вольтамперометрию, связанную с использованием ртутного капающего электрода (РКЭ), называют полярографией. Характерной особенностью полярографического метода является применение электродов с разной площадью поверхности. Поверхность одного из электродов, называемого микроэлектродом, должна быть во много раз меньше поверхности другого электрода. В качестве микроэлектрода чаще всего применяют РКЭ, представляющий собой капилляр, из которого равномерно с определенной скоростью вытекают капли металлической ртути. Скорость прокапывания определяется высотой подвески емкости с ртутью, соединенной шлангом с капилляром. Второй электрод, поверхность которого во много раз больше поверхности микроэлектрода, служит электродом сравнения. В качестве него используют ртуть, налитую на дно электролитической ячейки, или насыщенный каломельный электрод. На эти электроды от внешнего источника напряжения подают плавно изменяющееся напряжение. Плотность тока (А/см2) на электроде сравнения, имеющего большую поверхность, ничтожно мала, поэтому потенциал его практически не изменяется, т.е. этот электрод не поляризуется. Плотность тока на РКЭ вследствие его малой поверхности высока. РКЭ изменяет свой равновесный потенциал, т.е. поляризуется. Реализацию метода осуществляют на приборах, называемых полярографами. Принципиальная схема полярографа приведена на рис. 2.1. Ток от аккумулятора поступает на реостат, при помощи которого через очень чувствительный гальванометр подается плавно повышающееся напряжение на электролитическую ячейку, содержащую ртутный (или каломельный) электрод, РКЭ и анализируемый раствор.

Рисунок 2.1 - Схема полярографической установки: 1 - электролизёр; 2 - сосуд с ртутью; 3 - гальванометр; 4 - передвижной контакт; 5 - реохорд; 6 - аккумулятор.

Вольтамперные кривые

Фиксируя силу тока, проходящего через ячейку, в зависимости от поданного напряжения, получают вольтамперные кривые, называемые в полярографии полярограммами (рис. 2.2). Форма полярограмм напоминает волну. Первый участок волны (АБ) соответствует начальному моменту процесса, когда протекает только остаточный (конденсаторный или емкостной) ток, связанный с расходом некоторого количества электричества на заряжение двойного электрического слоя на поверхности капли ртути и восстановлением следовых количеств электроактивных примесей.

Рисунок 2.2 - Типичный вид полярограмм определяемого элемента при концентрациях с1<c2<c3

Если в растворе присутствуют ионы, способные восстанавливаться на РКЭ (катоде), то при достижении определенного значения внешнего напряжения, обеспечивающего потенциал, равный потенциалу восстановления данных ионов, на полярограмме наблюдается резкое увеличение тока. Потенциал, соответствующий точке Б на полягрограмме, называют потенциалом выделения. Восстановление иона металла на РКЭ сопровождается растворением восстановившегося металла в ртути, т.е. образованием амальгамы:

С этого момента рост потенциала электрода как бы отстает от роста налагаемого внешнего напряжения - электрод деполяризуется. Вещество, участвующее в электрохимической реакции и вызывающее деполяризацию электрода, называется деполяризатором. Ток, обусловленный электрохимической реакцией на электроде, называют фарадеевским, подчеркивая его связь с процессом электролиза. Подвод ионов деполяризатора к электроду осуществляется путем диффузии в приэлектродный слой раствора, концентрация в котором (cЭ) меньше концентрации в глубине (с). Скорость диффузии, и тем самым сила тока, определяется разностью (градиентом) концентраций (с-сЭ), поэтому ток называют диффузионным током.

Дальнейшее увеличение напряжения вызывает уменьшение сЭ и усиление диффузии, следовательно, также и увеличение тока (участок БВ). Так продолжается до тех пор, пока сЭ не становится практически равной нулю. Это означает, что все ионы деполяризатора, которые подходят к электроду, сразу разряжаются. Дальнейшее увеличение напряжения не вызывает роста тока - достигается предельный диффузионный ток. Он зависит от концентрации деполяризатора в растворе

(так как ).

На коэффициент пропорциональности К оказывают влияние многие факторы. Д. Ильковичем было получено уравнение, в котором отражено влияние некоторых из них:

,

где z - число электронов, участвующих в электродной реакции;

D - коэффициент диффузии ионов деполяризатора;

m - масса ртути (мг), вытекающей из капилляра за одну секунду;

t - промежуток времени между двумя каплями, с.

Для обратимого восстановления деполяризатора Гейровским-Ильковичем было выведено уравнение полярографической волны

.

Когда сила тока равна половине предельного диффузионного тока (I = 1/2 IД), получают Е = Е1/2. Следовательно, половине высоты волны всегда соответствует одно и то же напряжение, независимо от концентрации деполяризатора. Оно называется потенциалом полуволны.

Качественный и количественный анализ

Качественный анализ проводят по потенциалам полуволн деполяризаторов. При этом необходимо иметь в виду, что на значение этой величины оказывают влияние фоновый электролит, рН раствора, присутствие комплексообразующих агентов. Определив в процессе полярографирования потенциалы полуволн ионов, находящихся в растворе, и сравнив их величины с табличными данными, можно установить, какие именно ионы находятся в растворе. Уравнение обратимой полярографической волны дает удобный графический способ нахождения важной качественной характеристики полярограммы - потенциала полуволны Е1/2. Построенная в координатах “ lgХ - [I/(Iд - I)] - Е” полярограмма будет выглядеть в виде прямой, точка пересечения которой с осью абсцисс - соответствует потенциалу, когда ток равен ?Iд (рис. 2.3).

Страницы: 1, 2, 3, 4



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.