на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Электролиты и их свойства
p align="left">Изучение свойств электролитов важно для выяснения механизмов электролиза, электрокатализа, электрокристаллизации, коррозии металлов и др., для совершенствования механизмов разделения веществ - экстракции и ионного обмена. Исследование свойств электролитов стимулируется энергетическими проблемами (создание новых топливных элементов, солнечных батарей, электрохимических преобразователей информации), а также проблемами защиты окружающей среды.

2.1 Ионная проводимость электролитов

Факт разложения электролитов при прохождении через них тока показывает, что в них движение зарядов сопровождается движением атомов или групп атомов, связанных друг с другом (например, SO4, NO3 и т. п.); эти атомы или атомные группы представляют собой части молекулы растворенного вещества.

Естественно предположить, что заряжены именно эти части молекулы в растворе и что они являются носителями электрического заряда. Их перемещение под действием сил электрического поля и представляет собой электрический ток, идущий через электролит.

Было обнаружено, что при прохождении тока через электролит выделение вещества происходит на обоих электродах. По химическому составу это разные части молекулы растворенного вещества. По количеству, если измерять его в химических эквивалентах, они равны. Знаки зарядов у них, очевидно, противоположны.

Мы знаем, что заряженные атомы называются ионами. То же название носят заряженные молекулы или их части. Мы можем, следовательно, сказать, что проводимость электролитов является ионной, т. е. обусловлена движением в них положительных и отрицательных ионов, которые образуются из нейтральной молекулы путем распада ее на две части, заряженные равными и противоположными зарядами.

Молекулы растворенного вещества, которые до растворения были электрически нейтральны, при растворении распадаются на положительные и отрицательные ионы, способные перемещаться независимо друг от друга.

а) б)

Рис. 1

Проводимость электролита зависит от наличия положительных и отрицательных ионов (кружки со знаками «+» или «-»): а) цепь разомкнута, тока нет; б) цепь замкнута, через электролит идет ионный ток.

Эти представления иллюстрируются рис. 1. Кружками между электродами со значками «+» и «-» схематически изображены положительные и отрицательные ионы растворенного вещества. Пока между электродами А и К не создано поле, ионы эти совершают только беспорядочное тепловое движение, как и все остальные молекулы раствора (рис.1, а). В каждом направлении за единицу времени протекает одинаковый положительный и отрицательный заряд, т. е. нет электрического тока -- преимущественного переноса заряда в определенном направлении. При наложении разности потенциалов на электроды А и К, когда внутри электролита возникает электрическое поле, на это беспорядочное движение накладывается упорядоченное движение в противоположные стороны ионов различных знаков: отрицательных -- к аноду А, положительных -- к катоду К (рис. 1, б).

При соприкосновении с катодом положительные ионы получают недостающие им электроны и выделяются в виде нейтральных атомов, а взамен электронов, нейтрализовавших ионы, новые электроны переходят от батареи к катоду. Точно так же отрицательные ионы при соприкосновении с анодом отдают ему свои избыточные электроны, превращаясь в нейтральные атомы; электроны же уходят по металлическим проводам в батарею. Таким образом, ток в электролите обусловлен движущимися ионами; на электродах же происходит нейтрализация ионов и выделение их в виде нейтральных атомов (или молекул). Итак, электрический ток в электролитах представляет собой движение положительных и отрицательных ионов.

Такое представление об электролизе подкрепляется многочисленными фактами. С этой точки зрения первый закон Фарадея получает простое объяснение. Каждый осаждающийся на электроде ион переносит с собой некоторый электрический заряд. Это значит, что полный заряд, перенесенный всеми ионами, должен быть пропорционален полному числу ионов, осевших на электродах, т. е. массе выделенного вещества. А это и есть первый закон Фарадея. Так же естественно и просто объясняется с этой точки зрения и второй закон Фарадея, дающий возможность вычислить электрический заряд, связанный с каждым ионом.

Отметим, что название «ион» введено Фарадеем (от греческого слова «ион» -- идущий). Ионы, заряженные положительно и выделяющиеся на катоде, Фарадей назвал катионами, ионы, выделяющиеся на аноде,-- анионами.

Опыт показал, что водород и металлы всегда выделяются на катоде; это значит, что в электролитах водород и металлы образуют положительные, ионы.

2.2 Движение ионов в электролитах

Движение ионов в электролитах в некоторых случаях может быть показано весьма наглядно.

Рис. 2. Опыт, показывающий движение ионов. Листок фильтровальной бумаги пропитан раствором электролита и фенолфталеина, ab -- нитка, смоченная раствором электролита

Пропитаем листок фильтровальной бумаги раствором электролита (сернокислого натра, Na2SO4) и фенолфталеина и поместим на стеклянную пластинку (рис. 2).

Поперек бумаги положим обыкновенную белую нитку, смоченную раствором едкого натра (NaOH). Бумага под ниткой окрасится в малиновый цвет благодаря взаимодействию ионов гидроксила (ОН) из NaOH с фенолфталеином. Затем прижмем к краям листка проволочные электроды, присоединенные к гальваническому элементу, и включим ток.

Ионы гидроксила из едкого натра начнут двигаться к аноду, окрашивая бумагу в малиновый цвет. По скорости перемещения малинового края можно судить о средней скорости движения ионов под влиянием электрического поля внутри электролита. Опыт показывает, что эта скорость пропорциональна напряженности поля внутри электролита. При заданном поле эта скорость для разных ионов несколько различна. Но, в общем, она невелика и для обычно применяющихся полей измеряется сотыми и даже тысячными долями сантиметра в секунду.

2.3 Теория электролитической диссоциации

Сванте Аррениус обратил внимание на тесную связь между способностью растворов солей, кислот и оснований проводить электрический ток и отклонениями растворов этих веществ от законов Вант-Гоффа и Рауля. Он показал, что по электропроводности раствора можно рассчитать величину его осмотического давления, а, следовательно, и поправочный коэффициент i. Значения i, вычисленные им из электропроводности, хорошо совпали с величинами, найденными для тех же растворов иными методами.

Причиной чрезмерно высокого осмотического давления растворов электролитов является, согласно Аррениусу, диссоциация электролитов на ионы. Вследствие этого, с одной стороны, увеличивается общее число частиц в растворе, а, следовательно, возрастают осмотическое давление, понижение давления пара и изменения температур кипения и замерзания, с другой, -- ионы обусловливают способность раствора проводить электрический ток.

Эти предположения в дальнейшем были развиты в стройную теорию, получившую название теории электролитической диссоциации. Согласно этой теории, при растворении в воде электролиты распадаются (диссоциируют) на положительно и отрицательно заряженные ионы. Положительно заряженные ионы называются катионами; к ним относятся, например, ионы водорода и металлов. Отрицательно заряженные ионы называются анионами; к ним принадлежат ионы кислотных остатков и гидроксид-ионы. Как и молекулы растворителя, ионы в растворе находятся в состоянии неупорядоченного теплового движения.

Процесс электролитической диссоциации изображают, пользуясь химическими уравнениями. Например, диссоциация НСl выразится уравнением:

НСl = Н+ + Сl-

Распад электролитов на ионы объясняет отклонения от законов Вант-Гоффа и Рауля. В качестве примера можно привести понижение температуры замерзания раствора NaCl. Теперь нетрудно понять, почему понижение температуры замерзания этого раствора столь велико. Хлорид натрия переходит в раствор в виде ионов Na+ и Сl-. При этом из одного моля NaCl получается не 6,02 * 1023 частиц, а вдвое большее их число. Поэтому и понижение температуры замерзания в растворе NaCl должно быть вдвое больше, чем в растворе неэлектролита той же концентрации.

Точно так же в очень разбавленном растворе хлорида бария, диссоциирующего согласно уравнению осмотическое давление оказывается в 3 раза больше, чем вычисленное по закону Вант-Гоффа, так как число частиц в растворе в 3 раза больше, чем, если бы хлорид бария находился в нем в виде молекул ВаСl2.

ВаСl2=Ва2+ + 2Сl-

Таким образом, особенности водных растворов электролитов, противоречащие с первого взгляда законам Вант-Гоффа и Рауля, были объяснены на основе этих же законов.

Однако теория Аррениуса не учитывала всей сложности явлений в растворах. В частности, она рассматривала ионы как свободные, независимые от молекул растворителя частицы. Теории Аррениуса противостояла химическая, или гидратная, теория растворов Менделеева, в основе которой лежало представление о взаимодействии растворенного вещества с растворителем. В преодолении кажущегося противоречия обеих теорий большая заслуга принадлежит русскому ученому И. А. Каблукову, впервые высказавшему предположение о гидратации ионов. Развитие этой идеи привело в дальнейшем к объединению теорий Аррениуса и Менделеева.

2.4 Процесс диссоциации

В зависимости от структуры растворяющегося вещества в безводном состоянии его диссоциация протекает по-разному. Наиболее типичны при этом два случая. Один из них это диссоциация растворяющихся солей, т. е. кристаллов с ионной структурой, второй--диссоциация при растворении кислот, т. е. веществ, состоящих из полярных молекул.

Когда кристалл соли, например, хлорида калия, попадает и воду, то расположенные на его поверхности ионы притягивают к себе полярные молекулы воды (ион-дипольное взаимодействие). К ионам калия молекулы воды притягиваются своими отрицательными полюсами, а к хлорид-ионам- положительными. Но, если ионы притягивают к себе молекулы воды, то и молекулы воды с такой же силой притягивают к себе ионы. В то же время притянутые молекулы поды испытывают толчки со стороны других молекул, находящихся в движении. Этих толчков вместе с тепловыми колебаниями ионов в кристалле оказывается достаточно для отделения ионов от кристалла и: перехода их в раствор. Вслед за первым слоем ионов в раствор переходит следующий слой, и таким образом идет постепенное растворение кристалла.

Иначе протекает диссоциация полярных молекул. Молекулы воды, притянувшиеся к концам полярной молекулы (диполь-дипольное взаимодействие), вызывают расхождение ее полюсов - поляризуют молекулу. Такая поляризация в сочетании с колебательным тепловым движением атомов в рассматриваемой молекуле, а также с непрерывным тепловым движением окружающих ее молекул воды приводит, в конечном счете, к распаду полярной молекулы на ионы. Как и в случае растворения ионного кристалла, эти ионы гидратируются. При этом ион водорода Н+ (т. е. протон) оказывается прочно связанным с молекулой воды в ион гидроксония Н3О+. Так, при растворении в воде хлороводорода происходит процесс, который схематически можно выразить уравнением

Н2О + НСl = Н3О+ +Сl-

В результате этого процесса молекула НСl расщепляется таким образом, что общая пара электронов остается у атома хлора, который превращается в ион Сl-, а протон, внедряясь в электронную оболочку атома кислорода в молекуле воды, образует ион гидроксония Н3О+.

Подобного же рода процессы происходят и при растворении в воде других кислот, например, азотной:

Н2О + НNO3 = Н3О+ + NO3-

Перешедшие в раствор ионы остаются связанными с молекулами воды и образуют гидраты ионов. Иначе говоря, в результате диссоциации образуются не свободные ионы, а соединения ионов с молекулами растворителя. В общем случае любого растворителя эти соединения называются сольватами ионов. Но в уравнениях диссоциации обычно пишут формулы ионов, а не их гидратов или сольватов, тем более что число молекул растворителя, связанных с ионами, изменяется в зависимости от концентрации раствора и других условий.

Диссоциации веществ как ионного, так и молекулярного строения способствует полярность молекул растворителя. Поэтому не только вода, но и другие жидкости, состоящие из полярных молекул (муравьиная кислота, этиловый спирт, аммиак и другие), также являются ионизирующими растворителями: соли, кислоты и основания, растворенные в этих жидкостях, диссоциируют на ионы.

2.5 Свойства кислот, оснований и солей с точки зрения теории электролитической диссоциации

Рассмотрим в свете теории электролитической диссоциации свойства веществ, которые в водных растворах проявляют свойства электролитов.

Кислоты. Для кислот характерны следующие общие свойства:

Ш способность взаимодействовать с основаниями с образованием солей;

Ш способность взаимодействовать с некоторыми металлами с выделением водорода;

Ш способность изменять цвета индикаторов, в частности, вызывать красную окраску лакмуса;

Ш кислый вкус.

При диссоциации любой кислоты образуются ионы водорода. Поэтому все свойства, которые являются общими для водных растворов кислот, мы должны объяснить присутствием гидратированных ионов водорода. Это они вызывают красный цвет лакмуса, сообщают кислотам кислый вкус и т. д. С устранением ионов водорода, например при нейтрализации, исчезают и кислотные свойства. Поэтому теория электролитической диссоциации определяет кислоты как электролиты, диссоциирующие в растворах с образованием ионов водорода.

Страницы: 1, 2, 3, 4, 5, 6



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.