на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Классификация, количественные определения минеральных удобрений
p align="left">h = Pa / P

Гигроскопическая точка соответствует относительной влажности воздуха (ha), при которой вещество не поглощает и не теряет влагу (равновесная относительная влажность). Следовательно, вещество поглощает влагу из воздуха, если ha>h и наоборот, вещество подсыхает, если h>ha. Скорость поглощения влаги удобрениями

Q = K (ha -- h)

где Q -- масса влаги, поглощенной единицей поверхности вещества в единицу времени; К -- коэффициент скорости поглощения влаги, выраженный в кг/(м2·ч) на один процент разности (ha -- h).

Гигроскопическую точку, выражающую отношение давления водяных паров над насыщенным раствором вещества к давлению паров воды в окружающем воздухе находят (по Н. Е. Пестову) статическим эксикаторным методом. Однако определяемая этим методом гигроскопическая точка зависит от влажности продукта и не характеризует скорости поглощения влаги веществом. При пропускании воздуха (азота) с определенной относительной влажностью (цотн) над сухим образцом наступает момент, когда в результате поглощения влаги на поверхности частиц образца образуется пленка насыщенного раствора. Влажность образца в этот момент названа критической (максимальной) влажностью (Wm). Влажность воздуха, соответствующая критической влажности названа критической гигроскопической точкой (цкр), исходя из которых выведена балльная шкала:

Баллы

Гигроскопические точки, %

Качественная оценка гигроскопичности

10-9

9-8

8-7

7-6

6-5

5-4

4-3

3-2

2-1

1-0

40-45 и менее

45-50

50-55

55-60

60-65

65-70

70-75

75-80

80-85

85-90 и более

Очень сильно гигроскопичны

«

Сильно гигроскопичны

«

Гигроскопичны

«

Несколько гигроскопичны

Слабо гигроскопичны

Почти не гигроскопичны

Практически не гигроскопичны

Методы химического контроля

Схема качественного определения ионного состава минеральных удобрений (по О.С. Безугловой с дополнениями Петербургского).

Порошки и гранулы, плохо растворимые в воде

МФУ проще всего различить, применив аналитическую реакцию с 2,4 инитрофенилгидразином:

В результате ее образуются желто-красные осадки гидразонов, склонные к быстрой кристаллизации. Таким же путем легко обнаружить и биурет в карбамиде.

Количественные определения минеральных удобрений

Все количественные определения минеральных удобрений производятся согласно ГОСТ 21560.4-02. В промышленных минеральных удобрениях принято рассчитывать следующие количественные показатели:

1. Действующее вещество (в %) в навеске прямого удобрения

2. Прочие соединения, которые включают в себя следующие показатели:

а) Свободные кислоты (кислотность)

б) Содержание хлорид-анионов

Определение процента действующего вещества

1. Удобрения, содержащие азот. Удобрения, содержащие NO3-- . Все соли азотной кислоты растворимы в воде. Между тем многие нитраты нерастворимы в некоторых неводных растворителях. Вследствие этого становится возможным применять для их определения методы осаждения. Предлагаемый метод основан на осаждении Ba(NO3)2, который, как известно, хорошо растворим в воде, но малорастворим в среде безводной уксусной кислоты. Нитраты титруют стандартным уксуснокислым раствором ацетата бария в среде безводной уксусной кислоты по току восстановления нитрат-ионов. В качестве индикаторного электрода используют медный вращающийся микроэлектрод, в качестве электрода сравнения -- насыщенный каломельный электрод, который соединяют с эле тролизером электролитическим ключом, заполненным насыщенным раствором хлорида калия в агар-агаре.

Нитрат-ионы восстанавливаются на медном вращающемся индикаторном электроде на фоне 0,05 н. уксуснокислого раствора LiCl, образуя хорошо выраженную полярографическую волну с Е% = --0,45 В. Диффузионный ток достигается при Е = --0,8 В; в соответствии с этим амперометрическое титрование проводят при потенциале --1,0 В. Кривые титрования имеют два излома. Первый излом соответствует примерно половине оттитрованного вещества, второй -- точке эквивалентности.

Ход работы: Навеску 0,1 г анализируемого вещества, взвешенную на аналитических весах, в стакане емкостью 30 мл растворяют в 1--2 каплях воды и добаляют 20 мл 0,05 н. уксуснокислого раствора хлорида лития. В микробюретку наливают стандартный 0,2 н. уксуснокислый раствор ацетата бария. В стакан опускают медный индикаторный электрод и соединяют электролизер с каломельным электродом при помощи электролитического ключа, затем включают мотор, частота вращения электрода должна быть около 800--900 об/мин. Устанавливают потенциал --1,0 В, включают гальванометр и титруют нитрат-ионы раствором ацетата бария, прибавляя его порциями по 0,2 мл. После прибавления каждой порции стандартного раствора отмечают положение светового зайчика на шкале. На основании полученных данных строят график зависимости показаний гальванометра (мм) от прибавленного объема титранта и графически находят объем титранта (мл), соответствующий точке эквивалентности. Содержание нитратного азота в удобрении в процентах вычисляют по формуле:

ю% =Э нитр •N Ba2+ · V Ba2+ · 100 / (884,95a)

Удобрения, содержащие NН4+ . Применяется метод колориметрирования, основанный на связывании определяемого компонента реактивом Несслера. Образовавшееся вещество обнаруживают оптически при помощи ФЭК-2 при длине волны л=600 нм и определенной высоте раствора пробы в цилиндре.

Ход работы: Взвешивают навеску удобрения 20,0 г и растворяют в 1 л дистиллированной воды и перемешивают. Из полученного раствора пипеткой отбирают 100 мл раствора в колориметрический цилиндр, где готовится раствор сравнения. Во все 3 цилиндра помещают по 3 мл реактива Несслера и по 3 мл сегнетовой соли (калий-натрий виннокислый) и перемешивают. Через 10 мин наблюдается появление окраски. Приступают к колориметрированию. Содержание аммонийного азота рассчитывают по формуле:

щ% = 3,88 • сст nст hст 1000 / h исп V

где сст - концентрация стандартного раствора, nст - количество стандартного раствора для приготовления раствора сравнения, hст - высота стандартного раствора, hисп - высота раствора пробы

Удобрения, содержащие свободный NН3. Известно, что от количества растворенного аммиака изменяется плотность раствора. На этой зависимости основан метод определения содержания азота в жидких удобрениях. В стеклянный цилиндр емкостью 500--1000 см3 наливают водный аммиак и опускают ареометр. По глубине его погружения (по шкале) и устанавливают плотность жидкости, вычисляя затем процент азота и аммиака:

Плотность

%Аммиака

%Азота

Плотность

%Аммиака

%Азота

Плотность

%Аммиака

%Азота

0,970

0,968

0,966

0,964

0,962

0,960

0,958

0,956

7,91

7,82

8,33

8,84

9,35

9,91

10,47

11,03

6,02

6,43

6,86

7,27

7,70

8,16

8,61

9,08

0,954

0,952

0,950

0,948

0,946

0,944

0,942

0,940

11,60

12,17

12,74

13,31

13,83

14,46

15,04

15,63

9,55

10,01

10,50

10,96

11,41

11,90

12,39

12,77

0,938

0,936

0,934

0,932

0,930

0,928

0,926

0,924

16,22

16,82

17,42

18,03

18,64

19,25

19,87

20,49

13,36

13,86

14,33

14,85

15,88

15,85

16,35

16,90

2. Удобрения, содержащие фосфор. Гравиметрический метод основан на вытеснении из удобрения свободной фосфорной кислоты, что делается с помощью концентрата Н2SО4. Поскольку очень многие фосфорные удобрения легко образуют с ней осадки, то вытесненную Н3РО4 легко отделить.

Ход работы: В коническую колбу вносят 20,0000 г удобрения, которое предварительно измельчают в порошок и приливают 25% серную кислоту в соотношении примерно 1:2 и нагревают до 50-70*С в течение 20-30 мин. После этого смесь отстаивают 10 мин, а выделившийся и осевший осадок отделяют фильтрованием смеси в другую колбу. Реакционную колбу ополоснуть 2 раза дистиллированной водой и слить в другую колбу. Затем добавляют в избытке крепкую магнезиальную смесь. Образовавшийся белый кристаллический осадок выдерживают с раствором при повышенной температуре. После того, как раствор над осадком станет совершенно прозрачным, его проверяют на полноту осаждения: в раствор с осадком по стенке стакана приливают несколько капель магнезиальной смеси. Если образуется муть, приливают по 3-5 мл смеси каждый раз после предыдущего обнаружения помутнения. Если не образуется мути, то отделяют и промывают от раствора в несколько декантаций, сливая раствор на фильтр по стеклянной палочке. Прокаливают при 200*С в течение 40-50 мин до момента, когда осадок перестанет резко пахнуть. После чего взвесить на аналитических весах с точностью до 4 знаков и провести вычисления по формуле:

ю = 3,189 m

где m--масса выпавшего осадка, г .

Удобрения, содержащие калий. Гравиметрический метод основан на связывании калия в образце удобрения при помощи тетрафенилбората натрия, образующего с ним белый кристаллический осадок, не растворимый в растворах кислот.

Ход работы: В коническую колбу вносят 20,0000 г удобрения, из которого готовят насыщенный раствор (см. выше). Если есть нерастворившиеся частицы, проводят фильтрование. Соли аммония мешают проведению процесса, их маскируют, добавляя к смеси 3%-ный раствор формальдегида. После этого в 2-кратном избытке вносят насыщенный раствор тетрафенилбората натрия. Выпавший осадок выдерживают с раствором при повышенной температуре, проверяют на полноту осаждения (см выше). После этого надосадочную жидкость сливают, а осадок сушат горячим воздухом, после чего взвешивают. Вычисления проводят по формуле:

ю=0,657 m

4. Удобрения, содержащие магний. Гравиметрический метод основан на связывании растворенного магния насыщенными растворами Na2 НРО4 и NН4OH (в избытке).

Ход работы: В коническую колбу вносят 20,0000 г измельченного в порошок удобрения и приготовляют насыщенный раствор, после чего добавляют в 1,5 -- 2-кратном избытке крепкие растворы Na2НРО4 и NН4OH (в избытке). Образовавшийся белый кристаллический осадок выдерживают с раствором при повышенной температуре. После того, как раствор над осадком станет совершенно прозрачным, его проверяют на полноту осаждения. Потом отделяют и промывают от раствора в несколько декантаций, сливая раствор на фильтр по стеклянной палочке. После прокаливают при 200*С в течение 40-50 мин до момента, когда осадок перестанет резко пахнуть. Полученный осадок взвесить на аналитических весах до 4 десятичных знаков и провести вычисления по формуле:

ю%=1,811 m

5. Микроудобрения. Метод подсчета действующего начала может проводиться на основе реакций вытеснения из микроудобрений их металла при помощи металлического цинка с последующим растворением в растворе кислоты или щелочи или другими методами.

Определение сорта медного купороса (содержание соли в образце). Определение основано на том, что при пропускании раствора с через колонку с катионитом в Н-форме катионы соли обмениваются на ионы водорода, при этом выделяется кислота в количестве, эквивалентном содержанию соли в растворе. Количество выделившейся кислоты определяют титрованием щелочью. В качестве сильнокислотных катеонитов в этем случае можно использовать катиониты марки СДВ-3, КУ-2 и др. в Н-форме.

Ход работы: Отбирают пипеткой 10 мл анализируемого 0,1 н. раствора соли из мерной колбы и помещают в колонку (диаметр 20 мм, высота 300 мм), содержащую 15 г сильнокислотного катионита в Н-форме. Раствор пропускают через катионит со скоростью примерно 2 капли в 1 с. Вытекающий из колонки раствор собирают в коническую колбу емкостью 300 мл. Затем через катионит спускают 60--100 мл дистиллированной воды, наливая ее из промывалки отдельными порциями по 10--15 мл. Новую порцию воды наливают тогда, когда уровень жидкости в колонке достигнет поверхности ионита. Полноту вымывания выделившейся кислоты проверяют по метиловому оранжевому; для этого отбирают на часовое стекло каплю вытекающего из колонки раствора и прибавляют индикатор. Если при этом окраска раствора станет желтой, то кислота полностью вымыта из катионита. Промывные воды тщательно собирают в ту же коническую колбу. Все содержимое конической колбы оттитровывают 0,1 н. раствором NaOH в присутствии метилового оранжевого. Определение проводят 3--5 раз, пропуская раствор соли через ту же колонку. Содержание соли вычисляют в граммах, затем переводят содержание соли в %:

m = Э соли • V (NaOH) · N (NaOH) • (Vk/1000 Va )

где Vk -обьем исследуемого раствора, мл, Vа -обьем анализируемого раствора, мл.

Кобальтовые. В концентрированный раствор сульфата кобальта помещают в избытке цинк в виде палочек, кусочков или пыли. После обесцвечивания раствора его сливают, отбирают непрореагировавшие кусочки цинка и заливают осадок кобальта с остатками цинка разбавленной NaOH, нагретой до температуры 60--70 °С. Металл переносят на фильтр, промывают разбавленной NaOH, водой, а затем спиртом. Сушат при температуре 40--50 °С. Можно воспользоваться также железом или алюминием в виде порошка или пластинок. Вычисления ведут по формуле:

ю%=100m1 / m.

Цинковые. В насыщенный раствор сульфата цинка, приготовленного из 20 г кристаллической соли, вносят концентрированный раствор динатрийфосфата Na2HPO4 • 2H2O. Выпавший осадок представляет собой бесцветный кристаллический порошок, плохо растворимый в воде (растворимость при нагревании уменьшается), который отфильтровывают, промывают небольшим количеством горячей воды до исчезновения в промывных водах сульфат-иона. Прокаливают выше 250 °С. Вычисления проводятся по формуле:

ю% = 2,540 m

Борные. 20, 0 г буры и 80 г гидроксида натрия растворяют в минимальном количестве воды и к раствору приливают 10 мл пергидроля в 9,2 мл воды. Выделившийся через некоторое время кристаллический осадок пербората отфильтровывают, промывают холодной водой, спиртом, эфиром и высушивают на воздухе. Затем в стеклянный стакан помещают мелкорастертую соль и заливают ее ацетоном, в который погружают небольшой стаканчик с осушителем (металлический кальций или амальгамированный алюминий в виде крупки, мелкой стружки или тонкой проволоки) в течение нескольких дней. После обезвоживания отфильтровывают в отсутствие влаги воздуха. Вычисления производятся по формуле:

ю% = 1,131m

Молибденовые. Метод основан на экстрагировании окрашенного роданидного комплекса молибдена (VI) и фотометрировании на ФЭК-2 полученного экстракта.

Ход работы: Приготовляют при небольшом нагревании насыщенный раствор молибдата аммония или натрия. К 10--15 мл анализируемого раствора добавляют 2,0 мл концентрированной НС1, 1 мл раствора соли Мора (1 г в 100 мл 0,2 н. H2SO4) и 3,0 мл 10%-ного раствора роданистого калия. После перемешивания добавляют 3 мл раствора SnCI2 (10 г в 100 мл 1 н. раствора НС1), разбавляют водой до объема 25 мл. Добавляют 5 мл изоамилового спирта или изопропилового эфира и энергично встряхивают сосуд в течение 30 с. При большом содержании железа в растворе органический экстракт промывают равным объемом 1%-ного раствора SnCl2 и фильтруют для удаления воды. Экстракт фотометрируют при длине волны л = 465 нм. Содержание молибдена находят по калибровочному графику.

Марганцевые. Гравиметрический метод основан на взаимодействии катионов марганца с растворами Н2О2 и NaOH с образованием темно-бурого кристаллического осадка.

Ход работы: К насыщенному раствору марганцевой соли добавляют концентрированный раствор NaOH и 10 мл 3%-ной перекиси водорода. Выпавший осадок настаивают при 50-60*С до появления прозрачности надосадочной жидкости. Затем проверяют на полноту осаждения, сливают жидкость над осадком, центрифугируют и взвешивают на аналитических весах. Вычисления ведутся по формуле:

ю %= 2, 6175 m.

Определение кислотности минеральных удобрений

Под кислотностью минеральных удобрений понимается наличие свободных кислот в определенной навеске удобрения. При вычислении кислотности следует иметь в виду, что в определенном виде удобрения содержится определенные кислоты, которые вводятся в состав удобрения для увеличения процента водорастворимого действующего начала. Так, например, Н3РО4 имеется в фосфоросодержащих видах удобрения, Н2SО4 вводят в азотные (не регламентируется), а Н3ВО3 имеет место в микроудобрениях. Титриметрический метод основан на титровании кислот 0,1 н NaOH.

Вычисление количества свободной Н3РО4. Первая точка эквивалентности отвечает нейтрализации Н3РО4 до H2PO4--. Вторая точка эквивалентности соответствует нейтрализации Н2РО4 до НРО4-- .

Ход работы: Титрование проводят на любом рН-метре. В стакан емкостью 100 мл пипеткой переносят аликвотную часть (25 мл) анализируемого раствора, опускают мешалку и устанавливают стакан на площадке магнитной мешалки. В раствор помещают индикаторный стеклянный электрод и один конец электролитического мостика, заполненного 0,1 н. раствором КС1. Другой конец мостика опускают в сосуд, заполненный 0,1 н. КС1, где находится хлорсеребряный электрод сравнения. Электроды присоединяют к соответствующим клеммам рН-метра. Верхнее отверстие бюретки закрывают хлоркальциевой трубкой, заполненной натронной известью для защиты раствора щелочи от действия Н2О и СО2 воздуха. После включения магнитной мешалки начинают титрование, прибавляя по 1 мл щелочи и измеряя ЭДС. Вблизи точки эквивалентности титрант прибавляют по 0,05 мл. Содержание фосфорной кислоты вычисляют в граммах по формуле, затем переводят в процент:

m = Э (Н3РО4) · N (NaOH) • (Vґґ NaOH--Vґ NaOH) /100

где Vґ NaOH и Vґґ NaOH--объемы титранта, пошедшего на титрование соответственно до первой и второй точек эквивалентности.

Вычисление количества свободной Н3ВО3. Определение борной кислоты в присутствии маннита или глицерина основано на потенциометрическом алкалиметрическом титровании бороманнитовой кислоты. Борная кислота настолько слаба, что не может быть прямо оттитрована в водном растворе, а в присутствии маннита происходит реакция образования более сильной бороманнитовой кислоты.

Ход работы: В сосуд вносят 50 мл анализируемого раствора удобрения, прибавляют 40 мл дистиллированной воды и 1 г маннита (или 10 мл глицерина), опускают стеклянный и насыщенный каломельный электроды и титруют на любом рН-метре 0,1 н. раствором NaOH на магнитной мешалке. Значение рН в точке эквивалентности 6,9. Эквивалентный объем NaOH определяют дифференциальным методом. Содержание H3BO3 во взятом для титрования объеме исследуемого раствора вычисляют в граммах по формуле, затем переводят в процент:

m = Э (Н3ВО3) • N (NaOH) · V (NaOH) / 1000

Вычисление содержания хлорид-ионов

Определение хлорид-ионов основано на реакции их осаждения нитратом серебра.

Ход работы: Навеску удобрения растворяют в мерной колбе на 100 мл (содержание С1-- должно приблизительно соответствовать 0,1 мг/мл) и тщательно перемешивают. Отбирают микропипеткой 5 мл раствора и помещают в мерную колбу на 50 мл. В нее же прибавляют 10 мл 0,1 н. раствора азотной кислоты, 2 мл 0,5%-ного раствора желатины, дистиллированной воды до общего объема приблизительно 30 мл, 10 мл 0,005 М AgNO3 и доливают водой до метки. Содержимое колбы тщательно перемешивают. Через 5 мин раствор переносят в кювету нефелометра типа ФЭКН-57 и измеряют рассеивание света не менее 3 раз. Вычисляют среднее значение и по калибровочной кривой определяют содержание хлорид-ионов.

Калибровочный график строят следующим образом. Из эталонного раствора КС1 (0,1 г КС1 в мерную колбу на 500 мл и доводят водой до метки), отбирают в четыре мерные колбы по 50 мл микропипеткой соответственно 2,0; 4,0; 6,0; 8,0 мл и приготавливают стандартные растворы, добавляя в них все реактивы, указанные выше.

Начинают измерения с пробы, имеющей наибольшую концентрацию. Раствор помещают в кювету. Устанавливают светофильтр, цвет которого близок к окраске исследуемого раствора в рассеянном свете. Если жидкость прозрачна и бесцветна, устанавливают зеленый светофильтр. Оба отсчетные барабана ставят на «0» и подбирают такой рассеиватель, при котором в окуляре левое фотометрическое поле будет несколько светлее правого. Вращением правого барабана уравнивают фотометрические поля по яркости и отсчитывают «кажущуюся» оптическую плотность.

СПИСОК ЛИТЕРАТУРЫ

1. Аналитическая химия. Химические методы анализа / под ред. О.М. Петрухина -- М.: Химия, 1992

2. Безуглова О.С. Удобрения и стимуляторы роста. --Ростов-на-Дону: Феникс, 2000

3. Ключников Н.Г. Неорганический синтез: Учеб. пос. для студентов пед. ин-тов по хим. и биол. спец. -- М.: Просвещение, 1983

4. Кореньков Д.А. Минеральные удобрения при интенсивных технологиях. М.: Агропромиздат, 1998

4. Литвак Ш.И. Фосфор на службе урожая / Пособие для учащихся.--М.: Просвещение, 1999

6. Орлова А.Н., Литвак Ш.И. От азота до урожая / Пособие для учащихся.-- М.: Просвещение, 1999

7. Соколовский А.А., Унанянц Т.П. Краткий справочник по минеральным удобрениям. М., Химия, 1980

8. Удобрения минеральные. Методы испытаний: ГОСТ 21560.0-02, ГОСТ 21560.3-02, ГОСТ 21560.5-02, ГОСТ 21560.4-02. -- М.: Издательство стандартов, 2003

9. Уманцев Я.З. Хозяйственные товары и бытовая химия: (Товароведение) : Учебник. -- 2-е изд, переработ. -- М.: Экономика, 1996

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.