на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Совершенствование технологии получения прядильного раствора в производстве ПАН волокон
p align="left">На практике наибольшее распространение в качестве растворителей ПАН получили диметилформамид НСОN(СН3)2 и 50 - 52%-ные водные растворы роданистого натрия NaSCN. Соответственно различают два промышленных способа получения полиакрилонитрильных волокон и нитей - диметилформамидный (на основе ДМФА) и солевой (на основе NaSCN).

До недавнего времени достоинством растворов роданистого натрия как растворителя являлась возможность синтеза ПАН методом полимеризации в растворе, что позволяло значительно сократить технологию получения прядильного раствора ПАН.

Следует отметить, что применение водных солей роданида натрия в технологии прядильного раствора ПАН сопряжено с рядом негативных моментов. Это, во-первых, сложная и многостадийная регенерация отработанного растворителя; во-вторых, повышенная коррозийность оборудования, что требует соответствующего аппаратурного оформления, в-третьих, неидеальные санитарно-гигиенические условия труда: работа с NaSCN приводит к кожным заболеваниям и заболеваниям внутренних органов, большие энергетические затраты.

К сожалению, на отечественных предприятиях по выпуску волокна нитрон до настоящего времени преобладает «солевой» способ (на основе NaSCN) [4].

Наряду с преимуществами метод по-лучения прядильного раствора путем полимеризации соответст-вующего мономера или смеси мономеров в растворе имеет и серьезные недостатки. При этом методе резко уменьшается воз-можность выпуска волокон различного ассортимента. В первую очередь это относится к получению ПАН волокон, так как при получении прядильного раствора путем растворной полимериза-ции в заданных условиях и в присутствии заданного инициатора можно получить только гомополимер или сополимер только од-ного вида, и, следовательно, из него может быть получено волок-но только одного вида. При получении прядильного раствора путем растворения готового полимера или сополимера всегда существует возможность варьировать состав выпускаемого во-локна заменой одного полимера или сополимера другим или смесью двух или трех полимеров. Это значительно расширяет возможность модифицировать и тем самым разнообразий ассортимент вырабатываемых волокон. В настоящее время, подав-ляющее число ПАН волокон получают на основе сополимеров различного состава [5].

1.2. Технология получения прядильного раствора

Независимо от используемого растворителя при непрерывной технологии получения прядильного раствора в производстве волокна нитрон технологический процесс включает следующие основные стадии [5]:

подготовку мономеров и растворителя;

приготовление реакционной смеси;

полимеризацию с получением прядильного раствора;

демономеризацию прядильного раствора с удалением не вступивших в реакцию мономеров;

регенерацию не вступивших в реакцию полимеризации мономеров и передачу их на стадию приготовления реакционной смеси;

подготовку прядильного раствора к формованию (смешение различных партий, деаэрацию и фильтрацию).

Принципиальная технологическая схема получения прядильного раствора в производстве волокна нитрон приведена на рис.1.

В соответствии с приведенной схемой исходные мономеры (АН, МА, ИтNa) проходят через теплообменник-выравниватель температур (поз.2), по межтрубному пространству которого протекает растворитель - 50 - 52%-ный водный раствор роданистого натрия или ДМФА. Подготовленные таким образом мономеры и растворитель объемными дозаторами (поз.3) подаются в аппарат приготовления реакционной смеси - смеситель (поз.1), куда одновременно поступают инициатор процесса полимеризации - порофор и регулятор молекулярной массы - двуокись тиомочевины (ДОТ). Как правило, используют смесь ДОТ и изопропилового спирта в соотношении 2:1 с целью уменьшения количества образующегося продукта разложения ДОТ - сульфата натрия. В смеситель (поз.1) поступают также рециркулируемые мономеры.

Приготовленная реакционная смесь передается в аппарат полимеризации - реактор (поз.4). Реактор представляет собой цилиндрическую емкость с трехлопастной мешалкой. Реакционная смесь поступает в нижнюю часть реактора и заполняет весь его объем, получаемый прядильный раствор отбирается из верхней части реактора. Из реактора (поз.4) прядильный раствор ПАН, содержащий 30 - 50% не вступивших в реакцию полимеризации мономеров, проходит в аппарат отгонки мономеров - демономеризатор (поз.5), где из тонкого слоя прядильного раствора, стекающего по стенкам аппарата и тарелкам, в условиях вакуума удаляются не вступившие в реакцию мономеры. Удаленные мономеры проходят сепаратор-конденсатор мономеров (поз.6) и возвращаются в технологический цикл (поз.1) в виде рециркулируемых мономеров. А демономеризованный прядильный раствор от нескольких реакторов поступает в бак меланжирования (усреднения) (поз.7) и затем в аппарат удаления пузырьков воздуха и азота (продукта разложения порофора) - деаэратор (поз.8), работающий по тому же принципу, что и демономеризатор [7]. Деаэрированный прядильный раствор ПАН с целью завершения его подготовки к формованию фильтруется на рамных фильтр-прессах и передается в прядильно-отделочный цех на формование.

Рис.1. Принципиальная технологическая схема получения прядильного раствора в производстве волокна нитрон:

1- смеситель реагентов; 2 - выравниватель температур; 3 - дозирующая установка; 4 - реактор; 5 - демономеризатор; 6 - сепаратор-конденсатор; 7 - бак меланжирования; 8 - деаэратор; 9 - фильтр-пресс

1.3. Изменение свойств акрилонитрильных волокон при замене итаконовой кислоты в сополимере

Для получения ПАНВиН используют различные сополимеры. В отечественной технологии производства волокна нитрон получил применение тройной сополимер, в состав входят акрилонитрил, метилакрилат и итаконовая кислота.

Учитывая то, что итаконовую кислоту получают из пищевого продукта - лимонной кислоты, проводятся работы по замене итаконовой на другие сополимеры, введение которых улучшало бы накрашиваемость волокна нитрон. Так, например, рассматривалась возможность использования для этих целей металлилсульфоната, 2-акриламид-2-метилпропансульфоновой кислоты [6]. Однако из-за сложности обеспечения чистоты получаемого прядильного раствора, изменения условий полимеризации эти сополимеры не получили практического промышленного применения [4].

Ташкент-скими исследователями еще в 1990 г. установлена принципиальная возможность замены итаконовой кислоты на акри-ловую (АК) [7].

В России итаконовую кислоту не производят, и поэтому ее замена на более дешевый и недефицитный продукт чрезвычайно важна. Для решения технологических задач необходимы глубокие исследования вопросов влияния АК на процесс полимеризации, реологичес-кие свойства растворов, равномерность и интенсив-ность крашения катионными красителями.

Процесс полимеризации осуществлялся в лабора-торных условиях с моделированием производствен-ного режима (температура - 70°С, рН = 5) и сохранением некоторых компонентов состава - порофора в качестве инициатора полимеризации, ди-оксида тиомочевины - в качестве регулятора молекулярной массы и роданида натрия - в качестве растворителя.

При исследованиях изменяли продолжительность процесса полимеризации (12, 45 и 75 мин) и состав сополимера - АН:МА:АК (93,5:5,2:1,31; 92,3:5,1:2,6; 89,8:5,0:5,2 %). Образцы получали в виде пленок путем растворения сополимера в диметилформамиде с последующим отливом.

Анализ результатов показал, что оптимальной является продолжительность полимеризации 75 мин. За этот период, при содержании в сополимере 1,3% ИК, выход полимера составлял 87%. Наличие в сополимере такого же количества АК приводит к увеличению выхода полимера до 91,3%. С увеличением содержания АК в 2 и 4 раза отмечен снижение выхода полимера.

От состава сополимера зависят и его реологические свойства. Замена ИК на такое же количество АК приводит к некоторому снижению вязкости, но с увеличением количества АК вязкость возрастает, а при 4-кратном увеличении АК - возрастает значительно, затрудняя формование волокна.

При изучении свойств сформованных пленок установлено, что их линейная плотность практически не зависит от состава сополимера и соотношения компонентов в нем. По показателям механических свойств образцы на основе сополимеров с АК превосходят промышленный образец, причем их свойства значительно зависят от содержания АК в сополимере. Большей разрывной нагрузкой и удлинением обладают образцы, содержащие 2,6 % АК.

Замена одного компонента, по данным ТГА, не оказывает существенного влияния на термостой-кость сополимера. Образцы имеют анало-гичные начальные температуры термолиза: промышленный - 230°С, содержащий 1,3 и 2,6% АК - также 230°С, 5,2% АК - 235°С. После завершения основных стадий термолиза (500°С) выход карбонизованного остатка (КО) составляет у про-мышленного образца 71% (масс), у образца, содер-жащего 2,6 % АК - 72%. Однако увеличение количества АК до 5,2 % приводит к снижению выхо-да КО до 66%. Замена ИК на АК значительно уменьшает экзотермические эффекты процесса циклизации, что может положительно проявиться при переработке нитей из такого сополимера в угле-родные.

Состав сополимера анализировали методом ИК-спектроскопии. Сравнительный анализ ИК-спектров показал совпадение полос поглощения всех валентных колебаний при длине волн от 800 до 3200 см-1. Однако отмечена большая интенсивность полос поглощения валентных колебаний групп СООН при 3640 см-1 у волокон, содержащих 1,3% АК, по сравнению с про-мышленным образцом. Увеличение содержания АК в 2 и 4 раза практически не влияет на интенсивность частоты колебаний групп СООН. Следовательно, из-менения в спектрах поглощения связаны с химической природой АК.

Зависимость интенсивности окраски пленок катионными красителями от состава сополимера изучали путем определения коэффициента отражения в види-мой части спектра. Установлено, что при замене 1,3% ИК на такое же количество АК интенсивность окрас-ки возрастает во всей области спектра. С увеличени-ем содержания АК интенсивность окраски в еще большей степени усиливается, что может позволить сократить расход дорогостоящих красителей. Следо-вательно, без изменения технологических парамет-ров процесса, только замена ИК на АК в составе сополимера и изменение соотношения компонентов в сополимере в производстве ПАН волокон позволит:

- применить более доступный и недефицитный отечественный компонент сополимера;

- увеличите выход сополимера на 3,1 % без ухуд-шения физико-механических и физико-химических свойств волокон;

- придать волокнам большую активность при окрашивании катионными красителями.

Авторами [8-10] с целью улучшения качества и расширения ассортимента полиакрилонитрильных (ПАН) волокон, а так-же замены итаконовой кислоты (ИК) при получении во-локна нитрон предлагаются волокна на ос-нове тройного сополимеров акрилонитрила (АН) с метилакрилатом (МА) и N-винилкапролактамом (ВКЛ).

Синтез и формование волокон проводили по тех-нологическому режиму, принятому для волокна нитрон. Волокна формовали на малой лабораторной прядиль-ной установке из 13%-ных прядильных растворов сопо-лимеров в роданиде натрия.

Установлено, что при увеличении содержания ВКЛ до 8% (масс.) прочность волокон при растяжении повышается, тогда как усадка и удлинение при разрыве уменьшают-ся. Увеличение суммарного содержания вторых компо-нентов (МА и ВКЛ) до 20% не приводит к существенному изменению свойств волокон по сравнению с 10%-ным их содержанием. Этот факт, вероятно, объясняется осо-бенностями структуры волокон.

На физико-механические показатели волокон влия-ет не только состав сополимеров, но и степень пластификационной вытяжки. С ее увеличением заметно воз-растают усадка и прочность, снижаются линейная плот-ность и удлинение волокон.

При рассмотрении основных физических свойств химических волокон необходимо, прежде всего, оцени-вать их надмолекулярную структуру, которая во многом определяет эти свойства. Судя по поперечным срезам волокон на основе тройных сополимеров АН с МА и ВКЛ, все образцы имеют овальное поперечное сечение. С увеличением степени пластификационной вытяжки форма поперечного среза несколько изменяется, в целом оставаясь бобовидной. Степень однородности волокон между собой и вдоль оси по размерам, наличию дефек-тов, способности к свечению в поляризованном свете, набуханию в муравьиной кислоте значительно различа-ется в зависимости от состава сополимера и степени пластификационной вытяжки. Самым тонким, наиболее однородным, бездефектным и более ориентированным (по способности к двойному лучепреломлению) оказа-лось волокно, полученное из сополимера с высоким со-держанием ВКЛ (АН:МА:ВКЛ= 90.21:2.05:7.85). Волок-но же, содержащее 1,8% ВКЛ и 8,41% МА - наиболее дефектное, с округлым поперечным сечением и неодно-родным свечением в поляризованном свете.

Оценивая не-которые структурные характеристики волокон по дифрактограммам, установили, что структура волокон замет-но изменяется при варьировании состава сополимера. Так, с увеличением содержания ВКЛ (при пластификационной вытяжке 225%) степень кристалличности воз-растает от 64 до 87% при степени ориентации 11-23, что свидетельствует о более высокой способности к ориен-тации волокон, сформованных в данных условиях.

Сравнение результатов сорбции волокон, получен-ных из сополимеров АН:МА:ВКЛ одинакового состава, показывает, что увеличение пластификационной вытяж-ки от 225 до 340% приводит к уменьшению сорбции па-ров воды. Изменение степени пластификацион-ной вытяжки волокон влияет и на удельную поверхность и объем пор; значения этих параметров возрастают с уменьшением пластификационной вытяжки. Удельная поверхность и объем пор с увеличением содержания ВКЛ в сополимере уменьшаются.

Страницы: 1, 2, 3



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.