на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Совершенствование технологии получения прядильного раствора в производстве ПАН волокон
p align="left">Химическое строение нового сополимера предоп-ределяет сродство красителя к волокну, поскольку функ-циональные группы элементарных звеньев, концевые и боковые группы макромолекул являются активными цен-трами, на которых происходит физическая или химичес-кая сорбция красителя. Наиболее богаты активными группами или центрами сополимерные ПАН волокна с высоким содержанием ВКЛ, в результате чего им прису-ще повышенное сродство к дисперсным красителям. Значительное влияние на адсорбцию красителей ПАН волокном оказывает нарушение его структуры в процессе создания сополимеров АН. Активные группы мономеров, вводимые для сополимеризации, способны образовывать дополнительные связи с молекулами дисперсных красителей. Так, сомономер ВКЛ (вернее, его функциональные группы) обладает высокими адсорбци-онными и комплексообразующими способностями и поэтому высоким сродством к дисперсному красителю. Положительные полюса диполей дисперсных красите-лей могут притягиваться к отрицательным зарядам ато-мов кислорода карбоксильных групп лактамных циклов ВКЛ, которые также способны образовывать водород-ные связи с атомами водорода дисперсных красителей.

Для изучения накрашиваемости и способности сорбировать краситель, в частности дисперсный красно-фиолетовый, использовали волокна на основе сополи-мера АН:МА:ВКЛ с соотношением компонентов 90:2:8, 90:5:5 и 90:8:2, сформованные в идентичных условиях по роданидному способу с пятикратной пластификаци-онной вытяжкой. Крашение проводили при температу-ре, близкой к температуре кипения воды (373 К), в присутствии поверхностно-активного вещества ОП-10.

Процесс сорбции красителя волокнами из водных растворов ОП-10 протекает сравнительно недолго. В те-чение 90 мин достигается видимое равновесие. В выб-ранном режиме кинетика крашения, скорость сорбции и равновесное содержание красителя в волокне суще-ственно зависят от содержания ВКЛ в сополимере. С увеличением содержания ВКЛ до 8% в сополимере равновесное сорбированное содержание краси-теля в волокне (С = 22 г/кг волокна), ярко-окрашенном в выбранном режиме крашения, существенно выше, чем в волокне на основе сополимера с 2%-ным содержани-ем ВКЛ (14 г/кг) и волокне нитрон (3,9 г/кг). Таким образом, увеличение количества виниллактамных групп в сополимере позволяет получить акриловые волокна, спо-собные окрашиваться в яркие цвета дисперсными кра-сителями.

Поскольку вода является структурным пластифика-тором по отношению к сополимеру АН:МА:ВКЛ, про-цесс крашения протекает, по-видимому, в условиях, близких к переходу полимерного субстрата в высокоэластичное состояние, что также оказывает влияние на процесс сорбции красителя волокном.

Термодинамические характеристики процесса кра-шения волокон из сополимеров АН:МА:ВКЛ определя-ли, варьируя температуру от 343 до 373 К. Уста-новлено, что с повышением температуры равно-весная сорбция красителя увеличивается. Так, для во-локна на основе сополимера, содержащего 8% ВКЛ, зна-чения равновесного содержания красителя на волокне составили 14,4; 17,6 и 22,0 г/кг волокна при температуре 343, 358 и 373 К соответственно. Анало-гично влияет изменение температуры на сорбцию кра-сителя волокнами с содержанием ВКЛ 5 и 2%. Однако коэффициент диффузии в исследуемом интервале тем-пературы изменяется незначительно [9].

Характеризуя исследуемые волокна, следует учиты-вать влияние температуры на их физическую структуру. С этой точки зрения все новые волокна относятся к груп-пе гидрофобных термопластичных, не имеющих разви-той системы микропор, но способных резко увеличивать свободный объем при нагревании выше температуры стеклования. Диффузия в этих волокнах происходит в возникающем в условиях фиксации свободном объеме.

Таким образом:

- при замене ИК на ВКЛ в тройных сополимерах АН:МА:ИК получаются волокна, аналогичные по струк-туре промышленному волокну нитрон, которые обладают тем более высокой способностью к ориентации, чем боль-ше ВКЛ введено в состав сополимера;

- полученные волокна обладают высокими физико-механическими характеристиками, повышенной гидрофильностью и накрашиваемостью дисперсными красителями по сравнению с волокном нитрон;

- увеличение содержания ВКЛ в составе сополимера, а также повышение температуры способствуют повышению степени закрепления дисперсного красителя на волокне. При обычных технологических режимах окрашивания уда-ется достичь высокого содержания остаточного красителя на волокне [8-10].

1.4. Органические растворители, используемые для получения ПАН волокон

Из большого числа веществ, в которых растворяется ПАН, практическое распространение нашли органические растворители - диметилформамид (ДМФА), диметилацетамид (ДМАА), диметилсульфоксид (ДМСО) и этиленкарбонат [2].

Полимеризация ПАН в диметилформамиде. ДМФА является одним из наиболее доступных и широко используемых, отличается высокой растворяющей способностью, то есть характеризуется минимальной вязкостью эквиконцентрированных растворов по сравнению с другими растворителями (табл.1).

Таблица 1

Вязкость растворов ПАН в различных растворителях при 40 °С

Растворитель

Вязкость раст-ворителя, р, П

Вязкость 10%-ного раствора ПАН, 0, П

Относительная вязкость

р / 010-2

Концентрация раствора ПАН при вязкости 315 П

Диметилформамид

0,73

18

15

18,2

Диметилсульфоксид

1,76

65

37

14,9

Этиленкарбонат

1,99

127

63

11,6

В связи с этим концентрация полимера в прядильном растворе при ДМФА-ном способе составляет:

при мокром формовании

- 20 - 25%;

при сухом формовании

- 30 - 32%.

Достоинством ДМФА как растворителя в производстве полиакрилонитрильных волокон является и возможность применения более эффективного сухого метода формования и сравнительная простота регенерации этого растворителя.

Основные сложности при ДМФА-ном способе сводятся к следующему:

- необходимость контроля содержания воды в растворителе, так как повышенное количество влаги в ДМФА (более 0,5%) уменьшает его растворяющую способность, повышает минимальную температуру растворения сополимера, снижает стабильность прядильного раствора, причем чем выше молекулярная масса ПАН и его концентрация в растворе, тем ниже должно быть предельное содержание воды в ДМФА во избежание желатинизации прядильного раствора;

- ограниченность использования ДМФА в качестве растворителя из-за его токсичности, что, к сожалению, характерно практически для всех растворителей;

- токсичность продуктов его регенерации. При ректификации ДМФА образуется диметиламин - сильнотоксичный продукт. Однако его образование можно исключить, если вести регенерацию ДМФА при температуре 90 - 100С (температура кипения 150 - 152С) в условиях вакуума;

- необходимость специальной футеровки ректификационных колонн из-за повышенной коррозийности оборудования в результате образования муравьиной кислоты при регенерации ДМФА [4].

Основным недостатком ДМФА является малая скорость полимеризации акрилонитрила (до 16 - 24 ч при конверсии мономера 70%), что в 8-10 раз превышает продолжительность в большинстве других растворителей. Такая низкая скорость полимеризации объясняется наличием в ДМФА примесей аминов, которые обрывают растущую цепь и ингибируют процесс радикальной полимеризации. Однако в последние годы стал возможен выпуск ДМФА высокой степени чистоты и осуществление непрерывной полимеризации ПАН.

Полимеризация ПАН в диметилацетамиде. По сравнению с ДМФА диметилацет-амид обладает несколько меньшей растворяющей способностью, но менее токсичен и агрессивен, меньше разрушает ректификационные колонны. Недостатком ДМАА является более высокая вязкость эквиконцентрированных растворов, что обуславливает необходимость понижения концентрации полимера в растворе на 1-2% и увеличения объема отработанной осадительной ванны, поступающей на регенерацию. Кроме того, у ДМАА более высокая температура кипения, чем у ДМФА (165 вместо 151С). ДМАА образует с водой азеотроп, устойчивый до 100С. Поэтому для полного отделения воды от ДМАА его подвергают повторной ректификации при температурах выше 100С.

Полимеризация ПАН в диметилсульфоксиде. ДМСО является одним из сравнительно доступных растворителей ПАН. По своей растворяющей способности ПАН диметилсульфоксид следует за диметилформамидом. Поэтому в последнее время этот растворитель начали применять в промышленности полиакрилонитрильных волокон.

Преимуществом ДМСО при использовании его в качестве растворителя при синтезе полимера в растворе является высокая скорость полимеризации акрилонитрила. Продолжительность процесса при конверсии 70% и температуре полимеризации 70С не превышает 1,5-2 ч [2].

Также из литературных данных следует [11-13], что растворы ПАН ДМСО более стабильны, чем в ДМФА.

Наличие кислорода в реакционной среде при полимеризации акрилонитрила в растворе ДМСО, особенно при температурах ниже 60С, сильно замедляет и даже ингибирует процесс. Поэтому полимеризацию в среде ДМСО проводят в среде инертного газа. Используемый в качестве растворителя ДМСО должен содержать минимальное количество воды и диметилсульфида. При наличии в ДМСО 5% воды прядильный раствор желатинизирует уже на третий день [2].

Другое преимущество ДМСО заключается в том, что он не вызывает коррозии аппаратуры при формовании волокна и регенерации отработанной ванны.

Недостатками ДМСО являются:

- повышенное количество акрилонитрила (до 3% от массы ДМСО), поступающего вместе с растворителе в виде азеотропа в прядильный раствор и затем в осадительную ванну. Это количество акрилонитрила выделяется при формовании волокна и регенерации осадительной ванны, что резко повышает вредность работы в прядильном цеху;

- неприятный запах и повышенная токсичность при разложении ДМСО при формовании волокна, т.к. выделяется небольшое количество диметилсульфида;

- более высокая вязкость эквиконцентрированных растворов ПАН в ДМСО (табл.1), значительно превышающая вязкость растворов в ДМФА, что обуславливает необходимость снижения концентрации полимера в прядильном растворе.

Полимеризация ПАН в этиленкарбонате. Этиленкарбонат является хорошим растворителем для полимеров и сополимеров акрилонитрила.

Основными преимуществами этиленкарбоната являются низкая токсичность, отсутствие коррозии аппаратуры и высокая скорость полимеризации (1,5-2 часа при конверсии 60-70% акрилонитрила). К недостаткам этиленкарбоната относятся:

- высокая температура плавления (36С), что обуславливает необходимость обогрева всех аппаратов и трубопроводов, по которым поступает этот растворитель;

- высокая вязкость прядильный растворов и сравнительно легкий гидролиз растворителя при повышенных температурах, в частности при ректификации [2,3].

Таким образом, анализ промышленных растворителей ПАН показывает большую эффективность ДМФА как растворителя в производстве ПАНВиН. Более того, можно отметить, что ДМФА является более технологичным и менее токсичным растворителем по сравнению с водными растворами роданида натрия.

Заключение

Широкое распространение полиакрилонитрильных волокон связано с их специфическими ценными свойствами: высоко свето- и атмосферостойкотью при достаточно высоких физико-механических свойствах. Возможность придать ПАН волокнам пушистости и объемности делает их заменителями шерсти, а способность к циклизации позволяет использовать их в производстве углеродных волокон.

Сополимером при синтезе ПАН является итаконовая кислота, которую получают из пищевого продукта - лимонной кислоты. Поэтому, в настоящее время, предлагается замена итаконовой на другие сополимеры, введение которых улучшало бы накрашиваемость волокна нитрон. Такими сополимерами являются: металлилсульфонат, акриловая и 2-акриламид-2-метилпропан-сульфоновая кислоты, N-винилкапролактам.

При замене итаконовой кислоты на N-винилкапролактам в тройных сополимерах получаются волокна, аналогичные по структуре промышленному волокну нитрон, которые обладают тем более высокой способностью к ориентации, чем боль-ше N-винилкапролактама введено в состав сополимера. Полученные волокна обладают высокими физико-механическими характеристиками, повышенной гидрофильностью и накрашиваемостью дисперсными красителями по сравнению с волокном нитрон. Увеличение содержания ВКЛ в составе сополимера, а также повышение температуры способствуют повышению степени закрепления дисперсного красителя на волокне.

В технологии получения ПАН наибольшее применение нашли апротонные растворители: диметилформамид, диметилацетамид. диметилсульфоксид, гидротропный раство-ритель: 51,5%-ный водный раствор NaSCN.Однако, наиболее перспективным растворителем при лаковой полимеризации ПАН является диметилформамид, так как наиболее доступен, менее токсичен по сравнению с водными растворами роданида натрия.

Список использованной литературы

Геллер Б.Э. Состояние и перспективы развития производства полиакрилонитрильных волокон / Б.Э.Геллер // Химические волокна. - 2002. - №3. - С.3-10.

Роговин З.А. Основы химии и технологии химических волокон / З.А.Роговин / З.А.Роговин. - М.: Химия, 1974. - Т.2. - 344 с.

Карбоцепные синтетические волокна / под ред. К.Е.Перепелкина. - М.: Химия, 1973. - 589 с.

Устинова Т.П. ПАН-волокна: технология, свойства, применение / Т.П.Устинова, Н.Л.Зайцева. - Саратов: СГТУ, 2002. - 40 с.

Юркевич В.В. Технология производств химических волокон / В.В.Юркевич, А.Б.Пакшвер. - М.: Химия, 1987. - 304 с.

Геллер Б.Э. Влияние кислотности реакционной среды на процесс гомофазной сополимеризации акрилонитрила, метакрилата и 2-акриламид-2-метилпропансульфоновой кислоты / Б.Э.Геллер, Л.А.Щербинина, О.Н.Короткая // Химические волокна. - 2000. - №2. - С.23-26.

Артеменко С.Е. Изменение свойств полиакрилонитрильных волокон при замене итаконовой кислоты в сополимере на акриловую кислоту / С.Е.Артеменко, Л.Г.Панова, Н.М.Савельева // Химические волокна. - 1996. - №5. - С.42-43.

Мухамеджанова М.Ю. Структурные, физико-механические и сорбционные свойства волокон из тройных сополимеров акрилонитрила / М.Ю.Мухамеджанова, Н.Ю.Ширшова, Г.В.Никонович // Химические волокна. - 2000. - №3. - С.19-22.

Ширшова Н.Ю. Синтех волокнообразующих сополимеров на основе акрилонитрила, метилакрилата и N-винилкапролактама / Н.Ю.Ширшова, М.Ю.Мухамеджанова, Г.Хамракулова // Химические волокна. - 2001. - №1. -С.3-6.

Мухамеджанова М.Ю. Реологические свойства концентрированных растворов тройного сополимера акрилонитрила / М.Ю.Мухамеджанова, Н.Ю.Ширшова, Г.Хамракулова // Химические волокна. - 2000. - №5. -С.3-6.

Ассоциация макромолекул полиакрилонитрила / Л.В.Дубровина, Л.М.Бронштейн, Т.П.Брагина, П.М.Валецкий // Высокомолекулярные соединения. - Т.40, №3. - С.472-477.

Иовлева М.М. К вопросу о растворимости полиакрилонитрила / М.М.Иовлева, В.Н.Смирнов, Г.А.Будницкий // Химические волокна. - 2001. - №4. - С.16-18.

Иовлева М.М. Фазовые диаграммы волокнообразующих полимеров / М.М.Иовлева // Химические волокна. - 2000. - №4. - С.20-25.

Страницы: 1, 2, 3



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.