на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Химический анализ силикатов и керамики

Химический анализ силикатов и керамики

- 47 -

Содержание

Введение

Характерные свойства глин

Химический состав легкоплавких глин

Превращения при обжиге огнеупорных и тугоплавких глин

Минералы огнеупорных и тугоплавких глин

Изменения, происходящие при нагревании глинистых минералов

Фазовые превращения, происходящие при обжиге глин

Особенности превращения кремнезёма

Особенности образования и развития муллита при обжиге глин

Список использованной литературы

Введение

Кирпич является самым древним строительным материалом. В Библии есть упоминание о кирпиче как о строительном материале уже применительно к временам расселения людей сразу после Великого Потопа, т.е. на заре сознательной истории человечества. "И сказали друг другу: наделаем кирпичей и обожжем огнем. И стали у них кирпичи вместо камней." (Ветхий завет. Бытие. Гл. 11-3). Хотя вплоть до нашего времени широчайшее распространение имел во многих странах необожженный кирпич-сырец, часто с добавлением в глину резаной соломы, применение в строительстве обожженного кирпича также восходит к глубокой древности (постройки в Египте, 3-2-е тысячелетие до н.э.). Особенно важную роль играл кирпич в зодчестве Месопотамии и Древнего Рима, где из кирпича (45х30х10) выкладывали сложные конструкции, в том числе арки, своды и т.п. Ярким примером использования кирпичного строительства в России времен Иоанна 3 стало строительство стен и храмов Московского Кремля, которым заведовали итальянские мастера. "...и кирпичную печь устроили за Андрониковым монастырем, в Калитникове, в чем ожигать кирпич и как делать, нашего Русского кирпича уже да продолговатее и тверже, когда его нужно ломать, то водой размачивают. Известь же густо мотыками повелели мешать, как на утро засохнет, то и ножем невозможно расколупить." До 19-го века техника производства кирпича оставалась примитивной и трудоемкой. Формовали кирпич вручную, сушили только летом, обжигали в напольных печах-времянках, выложенных из высушенного кирпича-сырца. В середине 19-го века были построены кольцевая обжиговая печь и ленточный пресс, обусловившие переворот в технике производства кирпича. В это же время появились глинообрабатывающие машины бегуны, вальцы, глиномялки. В наше время более 80% всего кирпича производят предприятия круглогодичного действия, среди которых имеются крупные механизированные заводы, производительностью свыше 200 млн. шт. в год.

История кирпича насчитывает уже несколько тысячелетий. Самые древние предметы из обожженной глины найдены на стоянке древнекаменного века (палеолита) в Словакии, возраст их составляет 25 тысяч лет. Термин «керамика» обозначает изделия из обожженной глины. По-гречески «керамос» - глина. Когда-то в древних Афинах мастера - горшечники жили компактно в одном из районов города. Этот район стал называться афинянами «Керамик», и с той поры за любыми вещами, изготовленными из глины и прошедшими обжиг в огне или костра, закрепилось название «керамика». Помимо горшков, вторым важнейшим продуктом гончарного ремесла был всем нам хорошо знакомый кирпич. На Древнем Востоке кирпичи носили своеобразную форму глиняных бутылок и напоминали современные, всем известные батоны белого хлеба.

В древней Руси производство кирпича началось в Х в., что связано с влиянием византийской культуры. Наиболее массово строительный кирпич стали применять с конца столетия. В результате крещения Руси в 988 году со священниками из Византии приехали и строители, привезшие секрет производства кирпича. Издревле был выработан особый стандарт кирпича. Дело в том, что для более прочной связи в кладке надо класть кирпич вдоль и поперек друг к другу как 1:0, 5:0, 25-0,3. Русский кирпич второй половины ХIХ века обычно весил около 10 фунтов (фунт-410 грамм), или порядка 4,1 кг. И имел размеры 26-27 х 12-13 х 6-7 см (примерно 6 на 3 на 1,5 вершков; в одном вершке 4,44см) Такие габариты имеет строительный кирпич многих гражданских и культовых построек Коломны. Выстроенных в конце ХIХ-начале ХХ в.в.

Выработка и продажа кирпича шла тысячами и десятками тысяч штук. Главное, что двигало производство кирпича, делало привлекательным для строителей и давало максимальную прибыль, - хорошее качество кирпича и максимальная дешевизна получаемого кирпича. Поэтому первым требованием к любому кирпичному заводу было наличие глин на самом его месте, чтобы не тратить деньги на ее перевозку. Месторождение должно быть очень большое, т.к. производство кирпича требует большой массы материала. Наконец, месторождение должно было легко разрабатываться простейшими приемами (вскопкой лопатами). Обычно это неглубоко залегающие глины, богатые песком, содержащие железо, калий, известь, поэтому сравнительно легкоплавкие и легко спекающиеся при обжиге. Можно сказать, что совсем непригодны только глины с примесью камня-мергеля. Основное требование к глине - ее совершенная однородность. Знание об истории появления кирпича, его технически-правильного производства это то, без чего не будет хорошего строительного кирпича.

Характерные свойства глин

Глинами называется группа распространенных в природе осадочных горных пород, сложенных различными глинистыми минералами - водными алюмосиликатами - со слоистой кристаллической структурой. Важнейшими глинистыми минералами являются каолинит Аl2O3 ? 2SiO2 ? 2H2O, монтмориллонит А12O3 ? 4SiO2 ? nH2O и др. Глинистые минералы определяют основную особенность глин - образовывать с водой пластичное тесто, способное в процессе высыхания сохранять приданную ему форму и после обжига приобретать свойства камня.

К важнейшим свойствам глин относятся пластичность, воздушная усадка и огневая усадка, огнеупорность и цвет черепка после обжига.

Пластичностью глин называется способность глиняного теста под действием внешних сил принимать заданную форму без образования трещин и устойчиво сохранять ее. Природные глины содержат различные примеси, например кварц, кальцит, слюды, соединения железа и другие. Примеси понижают пластичность глин тем в большей степени, чем выше их содержание. Пластичность глин повышается с увеличением количества воды в глиняном тесте, но до некоторого предела, сверх которого глиняное тесто начинает терять удобоформуемость (прилипает к поверхностям глиноперерабатывающих машин). Чем пластичнее глины, тем больше они требуют воды для получения удобоформуемого глиняного теста.

Глинистые минералы при смачивании глин водой набухают вследствие того, что поглощаемая ими вода располагается между отдельными слоями их кристаллических решеток, при этом межплоскостные расстояния решеток значительно увеличиваются. При сушке глин происходит обратный процесс, сопровождающийся усадкой.

Воздушной усадкой (линейной или объемной) называется уменьшение линейных размеров и объема образца из глиняного теста при высыхании. Воздушная усадка тем больше, чем выше пластичность глины.

При обжиге глин после удаления гигроскопической влаги и выгорания органических примесей происходит разложение глинистых минералов. Так, каолинит при температуре 500-600°С теряет химически связанную воду, при этом процесс протекает с полным распадом кристаллической решетки и образованием аморфной смеси глинозема А12O3 и кремнезема SiO2. При дальнейшем нагреве до температур 900-950°С возникают новые кристаллические силикаты, например муллит ЗА12O3 ? 2SiO2, а также образуется некоторое количество расплава (жидкой фазы) за счет плавления наиболее легкоплавких минералов, входящих в состав обжигаемых глиняных масс.

Чем больше в составе глин окислов-плавней Nа2O, К2О, МgО, СаО, Fе2O3, тем ниже температура образования жидкой фазы. В процессе обжига под действием сил поверхностного натяжения жидкой фазы твердые частицы обжигаемого материала сближаются и объем его уменьшается, то есть происходит огневая усадка. Огневой усадкой (линейной или объемной) называется уменьшение линейных размеров и объема высушенных глиняных образцов в процессе обжига.

Переход глиняных масс при обжиге и последующем охлаждении в камнеподобное тело обусловлен сцеплением частиц в результате диффузных процессов, приводящих к возникновению новых кристаллических силикатов за счет топохимических реакций, и образованием стекловидного расплава, связывающего отдельные более огнеупорные зерна в прочный монолитный черепок.

Процесс уплотнения глиняных масс при обжиге принято называть спеканием. Температура обжига, при которой водопоглощение обожженного изделия составляет 5°/о, принимается за начало спекания глин. Температурный интервал между огнеупорностью и началом спекания называется интервалом спекания глин. Его величина зависит от состава глин: чистые каолинитовые глины имеют интервал спекания более 100°С, присутствие в составе глин кальцита СаС03 уменьшает их интервал спекания. При производстве плотных керамических изделий можно использовать только глины с большим интервалом спекания.

Огнеупорность глин зависит от их состава, и у чистого каолинита она равна 1780°С. По огнеупорности глины подразделяются на огнеупорные с огнеупорностью более 1580°С, тугоплавкие с огнеупорностью 1350-1580°С и легкоплавкие с огнеупорностью менее 1350°С.

Для получения керамических строительных материалов используют преимущественно легкоплавкие (кирпичные) глины, содержащие значительное количество кварцевого песка, соединений железа и других плавней.

Цвет глиняного черепка после обжига зависит от состава глин, и в частности от присутствия в них окислов железа. Соединения железа окрашивают керамический черепок в красный цвет при обжиге в окислительной среде и в темно-коричневый или черный - при обжиге в восстановительной среде. Интенсивность окраски повышается с увеличением содержания в глине Fе2O3.

Химический состав легкоплавких глин

Глина состоит из химических соединений алюминия, кремния, железа, титана, кальция, магния, натрия, калия в виде окислов, солей и др. В глинах содержатся также некоторое количество органических веществ и вода.Содержание важнейших окислов, входящих в состав легкоплавких глин, находится в следующих пределах (в %) : кремнезема SiO2 - 60-80; глинозема Al2O3 вместе с окисью титана TiO2 -5-20; окиси железа Fе2O3 вместе с закисью железа FeO -3-10; окиси кальция CaO -0-25; окиси магния MgO -0-3; окислов щелочных металлов Na2O - K2O -1-5.

Кремнезем - окись кремния SiO 2 находиться в глинах в связанном и свободном состояниях: связанный кремнезём входит в состав глинообразующих минералов ,свободный представлен в виде кварцевого песка и тонких пылевидных частиц (шлюфа).Кварцевый песок в значительно количестве засоряет глину и снижает её пластичность. С увеличением количества песка уменьшаются усадка изделий и их механическая прочность. Кроме того, изделия при большом содержании кремнезема могут в процессе обжига увеличиваться в объёме за счёт превращений кварца в другие модификации (разновидности).

Глинозём Al2O3 находиться в глине в связном состоянии, участвуя в составе глинообразующих минералов и слюдянистых примесей . Он является наиболее тугоплавким окислом. С повышением содержания глинозёма, как правило, повышается пластичность глины, возрастает прочность сформированных, сухих и обожжённых изделий, увеличивается их огнеупорность.

Двуокись титана TiO2 содержится в наибольшем количестве до 1,5 % и придаёт обожжённому изделию окраску зеленоватых тонов; интенсивность зависит от соотношения с другими окислами.

Окись железа Fе2O3 содержится в глинах главным образом в составе примесей и придаёт глинам после обжига преимущественно красноватый цвет; при содержании от 3% и более при восстановительной среде окись железа заметно снижает температуру обжига изделий, превращаясь в закисные формы.

Окись кальция (известь) CaO и окись магния ( магнезия) MgO входит обычно в состав карбонатных пород - известняка, кальциты, доломита и присутствует в глине в виде углекислого кальция CaCO3 и углекислого магния MgCO3. Образующаяся в процессе обжига изделий окись кальция под влиянием влаги воздуха превращаеться в гидрат окиси кальция Ca (OH)2 и, увеличиваясь в объёме, разрушает изделия. Влияние окиси магния менее значительно. Окись кальция влияет также на окраску получаемых изделий и придаёт им жёлтый или розоватый цвет. Наличие окиси кальция в тонкораспылённом состоянии делает сырьё менее чувствительным к сушке, т.е. уменьшает трещинообразование.

Окислы щелочных металлов (Na2O и K2O) являются плавнями, понижают температуру обжига и придают керамическому черепку большую прочность. Высокий процент их, в особенности K2O, свидетельствует о значительном содержании слюды и гидрослюды в глинах. Они входят в состав глинообразующих минералов, но в большинстве случае присутствуют в примесях в виде растворимых солей. При сушке изделий последние мигрируют (проникают) по капиллярам на их поверхность, а после обжига спекаются с черепком, образуя на внешней поверхности изделия белесоватые налёты, портящие цвет черепка. Окислы щелочных металлов ослабляют красящее действие Fе2O3 и TiO2.

Химический состав глин является их основной характеристикой и в значительной мере определяет их промышленное значение.

В зависимости от минерального состава глинистое сырье подразделяют на группы, указанные ГОСТ 9169-75*

Страницы: 1, 2, 3, 4, 5



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.