на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Шпора: Шпора 2 по мат анализу
p>Шпора: Шпора 2 по мат анализу

6. Пусть Шпора: Шпора 2 по мат анализу интегрируема на Шпора: Шпора 2 по мат анализу , Шпора: Шпора 2 по мат анализу , то существует М, такая что Шпора: Шпора 2 по мат анализу

25.Интеграл с переменным верхним пределом.

Теорема о его непрерывности.

Теорма: Если функция f(x) интегрируема на отрезке [a,b], то функция

Шпора: Шпора 2 по мат анализу

непрерывна на этом отрезке.

Доказательство: Дадим числу х приращение ∆х так, чтобы х+∆хÎ[a,b]. Для наглядности изобразим на числовой оси один из возможных вариантов расположения точек:

Шпора: Шпора 2 по мат анализу

Шпора: Шпора 2 по мат анализу

a x0 x х+∆х b

Шпора: Шпора 2 по мат анализу

Шпора: Шпора 2 по мат анализу

Получим:

По теореме (Если функция y=f(x) интегрируема на отрезке, то интегрируема и абсолютная величина |f(x)|, причем

Шпора: Шпора 2 по мат анализу

.(на этом теорема закончилась, но неравенство относится к ней.) и следствию из теоремы (Если на отрезке [a,b] функция f(x) интегрируема и удовлетворяет неравенству m£f(x)£M. То выполняются неравенства:

(на этом следствие из теоремы закончилось)

получаем:

Отсюда следует, что при ∆х→0 будет ∆F→0. Это доказывает непрерывность функции F(x). Отметим, что для подынтегральной функции f(x) точка х может быть точкой разрыва.

26.Формула Ньютона-Лейбница.

Пусть F(x) -произвольная первообразная для функции f(x), заданной на промежутке [a,b]. Так как две первообразные одной и той же функции отличаются на постоянное слагаемое, то верно равенство (1):

Шпора: Шпора 2 по мат анализу

( в качестве числа х0 взято число а).

Шпора: Шпора 2 по мат анализу

В этом тождестве положим х=а и получим ,

Откуда С = -F(a). Формула (1) примет вид:

Заменяя здесь х на b, приходим к формуле Ньютона-Лейбница:

Шпора: Шпора 2 по мат анализу

Иногда ее правую часть записывают короче с помощью двойной подстановки:

Шпора: Шпора 2 по мат анализу

27.Замена переменных в определенном интеграле.

Теорема: при замене переменной х на t по формуле x=φ(t) равенство (1)

Шпора: Шпора 2 по мат анализу

Справедливо при условиях:

1. φ(α) = а, φ(β) = b,

2. φ'(t) непрерывна на отрезке [α,β],

3 f(x) непрерывна на отрезке [a,b], а f[φ(t)] определена непрерывна на отрезке [α,β].

Шпора: Шпора 2 по мат анализу

Доказательство: при наших предположениях левая и правая части равенства (1) существуют и существуют первообразные подынтегральные функции. Пусть ∫f(x)dx = F(x)+C. Тогда, как легко проверить дифференцированием обеих частей, справедливо равенство ∫f[φ(t)]φ'(t)dt = F[φ(t)]+C правая часть дифференцируется как сложная функция). Применяем формулу Ньютона-Лейбница

Получаем

Шпора: Шпора 2 по мат анализу

(по условию 1)

правые части этих двух равенств оказываются одинаковыми, следовательно, можно приравнять левые части. Приравнивая их, приходим к равенству (1). Ч.т.д.

28.Формула интегрирования по частям определенного интеграла.

Пусть u и v - непрерывно дифференцируемые функции. Проинтегрируем равенство d(uv)=udv+vdu в пределах от a до b.

Шпора: Шпора 2 по мат анализу

В левой части применим формулу Ньютона-Лейбница:

Получим:

Шпора: Шпора 2 по мат анализу Шпора: Шпора 2 по мат анализу Шпора: Шпора 2 по мат анализу

29.Приложение определенного интеграла. Площадь криволинейной трапеции.

Площадь s криволинейной трапеции, ограниченной кривой у=Ах2+Вх+С, проходящей через точки М1 (-h; y1), M2 (0, y2), M3 (h, y3) (рис. 2) выражается формулой

Шпора: Шпора 2 по мат анализу (2)

Доказательство. Подставляя в уравнение у=Ах2+Вх+С координаты точек М1, М2, М3, получаем у1=Аh2-Вh+С; у2=С; у3=Аh2+Вh+С, откуда следует, что

2Аh2+2С=у1+у3; С=у2 (3)

Учитывая соотношение (3), имеем

Шпора: Шпора 2 по мат анализу

Рассмотрим снова криволинейную трапецию, ограниченную произвольной кривой y=f(x). Разобьем отрезок [a, b] на 2p равных отрезков точками a=x0<x1<x2<...<x2k<x2k+1<x2k+2<...<x2n-1<x2n=b, а кривую y=f(x) с помощью прямых x=xk на 2n соответствующих частей точками М0 , М1 , М2 , ..., М2k , М2k+1 , М2k+2, ..., М2n-2 , М2n-1 , М2n (рис. 3).

Через каждую тройку точек

М0 М1 М2 , ..., М2k М2k+1 М2k+2, ..., М2n-2 М2n-1 М2n

проведем кривую вида у=Ах2+Вх+С (см. лемму 1.1). В результате получим n криволинейных трапеций, ограниченных сверху параболами или прямыми (эти трапеции заштрихованы на рис. 3). Так как площадь частичной криволинейной трапеции, соответствующей отрезку [x2k, x2k+2], приближенно равна площади соответствующей “параболической” трапеции, то по формуле (2) имеем [в данном случае h=(b-a)/(2n)]

Шпора: Шпора 2 по мат анализу

где yk=f(xk), k=0, 1, 2, ...,2n. Складывая почленно эти приближенные равенства, получаем приближенную формулу

Шпора: Шпора 2 по мат анализу

или в развернутом виде

Шпора: Шпора 2 по мат анализу

Эта формула называется формулой парабол или формулой Симпсона.

30.Приближенное вычисление определенного интеграла. Формула трапеций.

Шпора: Шпора 2 по мат анализу

Пусть требуется вычислить интеграл Шпора: Шпора 2 по мат анализу , где f(x) - непрерывная функция. Для простоты рассуждений ограничимся случаем, когда f(x)³ 0. Разобьем отрезок [a, b] на n отрезков точками a=x0<x1<x2<...<xk-1<xk<...<xn=b и с помощью прямых х=хk построим n прямолинейных трапеций (эти трапеции заштрихованы на рис. 1). Сумма площадей трапеций приближенно равна площади криволинейной трапеции, т.е.

Где f(xk-1) и f(xk) - соответственно основания трапеций; xk - xk-1 = (b-a)/n - их высоты.

Таким образом, получена приближенная формула

Шпора: Шпора 2 по мат анализу

которая и называется формулой трапеций. Эта формула тем точнее, чем больше n.

31.Несобственные интегралы с бесконечными пределами. +++32.Несобственные интегралы второго ряда.

Несобственными интегралами называются: 1) интегралы с бесконечными пределами; 2) интегралы от неограниченных функций.

Несобственный интеграл от функции f(x) в пределах от a до +Ґ определяется равенством

Шпора: Шпора 2 по мат анализу

Если этот предел существует, то несобственный интеграл называется сходящимся; если же предел не существует, - расходящимся.

Аналогично

Шпора: Шпора 2 по мат анализу

и

Шпора: Шпора 2 по мат анализу

Если функция f(x) имеет бесконечный разрыв в точке с отрезка [a,b] и непрерывна при a <= x < с и с < x < b, то по определению, полагают

Шпора: Шпора 2 по мат анализу

33.Числовые ряды. Свойства сходящихся рядов.

Рассмотрим числовую последовательность

(an)=a1,a2,...,an,.

Составим из нее новую последовательность (Sn) следующим образом:

S1=а1,

S2=a1+a2

S3=a1+a2+a3,,

Sn=a1+a2+.+аn=Шпора: Шпора 2 по мат анализу

Sn+1=Sn+an+1

Выражение

a1+a2+.+аn+an+1+. (1)

обозначается символом Шпора: Шпора 2 по мат анализу и называется числовым рядом.

Числа а1, а2,.,аn,. называются членами ряда, а число аn- n – м членом или общим членом ряда.

Простейшие свойства числовых рядов

1о. Сходимость ряда не нарушится, если произвольным образом изменить (переставить, добавить или отбросить) конечное число членов ряда.

2о. Сходящийся ряд можно почленно умножить на любой множитель Шпора: Шпора 2 по мат анализу , т.е. если ряд Шпора: Шпора 2 по мат анализу имеет сумму S, то ряд

Шпора: Шпора 2 по мат анализу

Страницы: 1, 2, 3, 4



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.