на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Курсовая: Обработка результатов экспериментов и наблюдений
/p>

Биномиальные коэффициенты удобно получать с помощью треугольника Паскаля.

1 n = 0

1 1 n = 1

1 2 1 n = 2

1 3 3 1 n = 3

1 4 6 4 1 n = 4

1 5 10 10 5 1 n = 5

Все строки треугольника ( начинающегося с единицы ) начинаются и

заканчиваются единицей. Промежуточные числа получаются сложением соседних

чисел вышестоящей строки. Числа, стоящие в одной строке, являются

биноминальными коэффициентами соответствующей степени.

Из описания биномиального распределения становится ясно, что область его

действия там, где возможно многократное проведение испытаний с известной

вероятностью.

На рис. 7 представлен биномиальный закон распределения.

Рис. 7. Биномиальный закон распределения

Определим основные характеристики этого распределения.

Математическое ожидание

М (Х) =

Курсовая: Обработка результатов экспериментов и наблюдений

+

Курсовая: Обработка результатов экспериментов и наблюдений

+

Курсовая: Обработка результатов экспериментов и наблюдений

= np (q + p)n-1 = np.

Дисперсия распределения может быть определена из общего выражения

Курсовая: Обработка результатов экспериментов и наблюдений ,

но это приводит к громоздким вычислениям. В то же время случайная величина Х

принимает в каждом опыте только два значения: 1, если событие А произошло и

0, если оно не произошло с вероятностями, соответственно, р или q. Тогда

математическое ожидание одного опыта определится

М (Х1) = 0×q + 1×р = р = х

и соответственно дисперсия одного опыта

D (Х1) = (0 - р)2×q + (1 - р)2×р = р2q + q2р = рq (р + q) = рq.

Тогда дисперсия всех n опытов составит

D (X) = n×p×q.

3. Закон Пуассона

В случае малых р ( или, наоборот, близких к 1 ) биноминальный закон

распределения можно преобразовать следующим образом

Курсовая: Обработка результатов экспериментов и наблюдений

Курсовая: Обработка результатов экспериментов и наблюдений ,

где Курсовая: Обработка результатов экспериментов и наблюдений .

Курсовая: Обработка результатов экспериментов и наблюдений

.

Определим предел Рm,n при n ® ¥ и постоянном m. Тогда пределы

Курсовая: Обработка результатов экспериментов и наблюдений равны единице, а Курсовая: Обработка результатов экспериментов и наблюдений .

Окончательно имеем

Курсовая: Обработка результатов экспериментов и наблюдений .

Это распределение называется законом Пуассона, где l - интенсивность

распределения. Используется в задачах с редкими событиями. На рис. 8

представлена схема вероятностей, распределенных по закону Пуассона.

Рис. 8. Закон распределения Пуассона

Определим его основные характеристики и смысл величины l.

Запишем закон распределения в виде таблицы.

õi

0 1 2... m ...

pi

e-l

Курсовая: Обработка результатов экспериментов и наблюдений

Курсовая: Обработка результатов экспериментов и наблюдений

...

Курсовая: Обработка результатов экспериментов и наблюдений

...

M (X) =

Курсовая: Обработка результатов экспериментов и наблюдений

+

Курсовая: Обработка результатов экспериментов и наблюдений

.

Выражение в скобках есть разложение функции еl в ряд Маклорена.

Поэтому

М (Х) = lе-lеl = l.

Не рассматривая вывод отметим, что

D (Х) = l,

т.е. дисперсия равна математическому ожиданию.

Рассмотренные виды распределений случайной величины, конечно, не исчерпывают

всех существующих распределений. Можно назвать еще несколько: распределение

Бернулли, экспоненциальное распределение, гамма - распределение,

распределение Вейбула, гипергеометрические распределения и др. При

определенных условиях и параметрах один вид распределения может переходить в

другой. Поэтому при решении практических задач по законам распределения

случайных величин следует обращаться к специальной литературе.

2.4. Понятие статистической гипотезы и статистического критерия

Статистической гипотезой называют любое утверждение о виде или свойствах

распределения наблюдаемых в эксперименте случайных величин. Такие утверждения

можно делать на основе теоретических соображений или статистических

исследований других наблюдений. Например, при многократном измерении некоторой

физической величины, точное значение Х которой не известно, но в процессе

измерений оно меняется. На результат измерений влияют многие случайные факторы,

поэтому результат i - го измерения можно записать в виде аi = Х +

εi, где εi - случайная погрешность измерения.

Если εi складывается из большого числа ошибок, каждая из

которых не велика, то на основании центральной предельной теоремы можно

предположить, что случайные величины аi имеют нормальное

распределение. Такое предположение является статистической гипотезой о виде

распределения наблюдаемой случайной величины.

Если для исследуемого явления сформулирована та или иная гипотеза ( обычно ее

называют основной или нулевой гипотезой и обозначают символом Но ),

то задача состоит в том, чтобы сформулировать правило, которое позволяло бы по

результатам наблюдений принять или отклонить эту гипотезу. Правило, согласно

которому проверяемая гипотеза Но принимается или отвергается,

называется статистическим критерием проверки гипотезы Но .

Наиболее распространены такие статистические гипотезы, как:

а) вида распределения;

б) однородности нескольких серий независимых результатов;

в) случайности результатов эксперимента и т.п.

Статистический критерий проверки гипотезы Но служит для определения

возможного отклонения от основной гипотезы. Характер отклонений может быть

различным. Если критерий ²улавливает² любые отклонения от Но

, то такой критерий называют универсальным или критерием согласия. Существуют

критерии, которые выявляют отклонения от заданного вида, это узко направленные

критерии.

Выбор правила проверки гипотезы Но эквивалентен заданию критической

области х1, при попадании в которую переменной х гипотеза Но

отвергается. Критерий, определяемый критической областью х1 называют

критерием х1.

В процессе проверки гипотезы Но можно прийти к правильному решению

или совершить ошибку первого рода - отклонить Но когда она верна,

или ошибку второго рода - принять Но, когда она ложна. Иными

словами, ошибка первого рода имеет место, если точка х попадает в критическую

область х1, в то время как верна нулевая гипотеза Но, а

ошибка второго рода - когда х Î хо, но гипотеза Но

ложна.

Желательно провести проверку гипотезы так, чтобы свести к минимуму вероятности

обоих ошибок. Однако при данном числе испытаний n в общем случае невозможно

одновременно обе эти вероятности сделать как угодно малыми. Поэтому наиболее

рационально выбирать критическую область следующим образом: при заданном числе

испытаний n устанавливается граница для вероятности ошибки первого рода и при

этом выбирается та критическая область х1, для которой вероятность

ошибки второго рода минимальна.

2.5. Вероятности ошибок первого и второго рода

Рассмотрим станок, который может работать только в одном из двух состояний. Если

он работает в налаженном режиме, то для интересующего нас признака качества,

например, длины или диаметра заготовки, имеет место нормальное распределение

при работе как в налаженном так и в разлаженном режиме. Оба режима отличаются

только уровнем настройки процесса по математическому ожиданию ( М(х) = 10 и 11,

соответственно в налаженном и разлаженном режиме ), в то время как дисперсии в

обоих случаях составляют s2 = 4.

Проверить нужно нулевую гипотезу, в соответствии с которой М(х) = 10, против

альтернативы ( в данном случае единственной ) М(х) = 11. Конкурирующую гипотезу

обозначим Н1. Тогда Но: М(х) = 10; Н1: М(х) =

11.

Необходимо по результатам выборки определить в каком из состояний работает

станок. Примем объем выборки n из потенциально бесконечной генеральной

совокупности. В качестве контрольной величины возьмем выборочное среднее Х

n. На рис. 9 изображены плотности распределения Хn для n = 25 и

n = 4.

Для формулировки критерия необходимо разделить область изменения контрольной

величины (х) на критическую область отклонения гипотезы Но (

принятия Н1 ) и область принятия гипотезы Но. Для этого

необходимо выбрать число К, такое, что 10 < К < 11, и интервал ( -¥;

К ] рассматривать как область принятия гипотезы Но, а интервал [ К;

¥ ) - как область отклонения гипотезы Но. По рис. 9 видно, что

каждая реализация Х25 или Х4 возможна при верности любой

из двух гипотез, но с различной вероятностью. На рис. 9 указаны вероятности

совершения ошибки первого

Рис. 9. Плотности распределения двух гипотез при различном

объеме выборки и одинаковой дисперсии

рода a ( отклонения верной гипотезы Но ) и второго рода b ( принятие

гипотезы Но, когда она не верна ). По рис. 9 также видно, что

увеличение n ведет к уменьшению дисперсии распределения х и тем самым - к

одновременному уменьшению вероятностей a и b. В соответствии с рис. 9 можно

записать:

Курсовая: Обработка результатов экспериментов и наблюдений

;

Курсовая: Обработка результатов экспериментов и наблюдений .

Эти два уравнения содержат четыре величины a, b, К, n. Задав две из четырех

величин, можно определить две другие.

Например, при n = 25 и К = 10,4 определим:

Курсовая: Обработка результатов экспериментов и наблюдений ;

Курсовая: Обработка результатов экспериментов и наблюдений

.

Если задаться величинами a и b, то можно определить величины К, n.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.