на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Стандатризация программных средств
p align="left">Рис.20. Графическое изображение процесса

Номер процесса служит для его идентификации. В поле имени вводится наименование процесса в виде предложения с активным недвусмысленным глаголом в неопределенной форме, за которым следуют существительные в винительном падеже. Использование таких глаголов как «обработать», «модернизировать», «отредактировать» означает недостаточно глубокое понимание процесса и требует дальнейшего анализа.

Информация в поле физической реализации, показывает, какое подразделение организации, программа или аппаратное устройство выполняет данный процесс.

Накопитель данных - это абстрактное устройство, для хранения информации, которую можно в любой момент поместить в накопитель и через некоторое время извлечь, причем способы помещения и извлечения могут быть любыми.

Накопитель данных может быть реализован физически в виде микрофиши, ящика в картотеке, таблицы в оперативной памяти, файла на магнитном носителе и т.д. Накопитель данных на диаграмме потоков данных идентифицируется в виде буквы «D» и произвольным числом. Имя накопителя выбирается из соображения наибольшей информативности для проектировщика.

Накопитель данных в общем случае является прообразом будущей базы данных, и описание хранящихся в нем данных может быть увязано с информационной моделью (ERD).

Поток данных определяет информацию, передаваемую через некоторое соединение от источника к приемнику. Реальный поток данных может быть информацией, передаваемой по кабелю между двумя устройствами, пересылаемыми по почте письмами, магнитными лентами и дискетами, переносимыми с одного компьютера на другой и т.д.

Поток данных на диаграмме изображается линией, оканчивающейся стрелкой, которая показывает направление потока. Каждый поток данных имеет свое имя, отражающее содержание.

Отчетность по

подоходному

налогу

Рис. 22. Поток данных между процессом и внешней сущностью

Построение иерархии потоков данных

Главная цель построения иерархии DFD заключается в том, чтобы сделать требования к системе ясными и понятными на каждом уровне детализации, а также разбить эти требования на части с точно определенными отношениями между ними. Для достижения этого целесообразно пользоваться следующими рекомендациями:

· Размещать на каждой диаграмме от 3 до 6-7 процессов. Верхняя граница соответствует человеческим возможностям одновременного восприятия и понимания структуры сложной системы с множеством внутренних связей, нижняя граница выбрана по соображениям здравого смысла: нет необходимости детализировать процесс диаграммой, содержащей всего один или два процесса.

· Не загромождать диаграммы не существенными на данном уровне деталями.

· Декомпозицию потоков данных осуществлять параллельно с декомпозицией процессов. Эти две работы должны выполняться одновременно, а не после завершения другой.

· Выбирать ясные, отражающие суть дела имена процессов и потоков, при этом стараться не использовать аббревиатуры.

Первым шагом при построении иерархии DFD является построение контекстных диаграмм. Обычно при проектировании относительно простых систем строится единственная контекстная диаграмма со звездообразной топологией, в центре которой находится так называемый главный процесс, соединенный с приемниками и источниками информации, посредством которых с системой взаимодействуют пользователи и другие внешние системы. Перед построением контекстной DFD необходимо проанализировать внешние события (внешние сущности), оказывающие влияние на функционирование системы. Количество потоков на контекстной диаграмме должно быть по возможности небольшим, поскольку каждый из них может быть в дальнейшем разбит на несколько потоков на следующих уровнях диаграммы.

Для проверки контекстной диаграммы можно составить список событий. Список событий должен состоять из описаний действий внешних сущностей (событий) и соответствующих реакций на события системы. Каждое событие должно соответствовать одному (или более) потоку данных: входные потоки интерпретируются как воздействия, а выходные потоки - как реакция системы на входные потоки.

Для сложных систем строится иерархия контекстных диаграмм. При этом контекстная диаграмма верхнего уровня содержит не единственный главный процесс, а набор подсистем, соединенных потоками данных. Контекстные диаграммы следующего уровня детализируют контекст и структуру подсистемы.

После построения контекстных диаграмм полученную модель следует проверить на полноту исходных данных об объектах системы и изолированность объектов (отсутствие информационных связей с другими объектами).

Для каждой подсистемы, присутствующей на контекстных диаграммах, выполняется ее детализация при помощи DFD. Это можно сделать путем построения диаграммы для каждого события. Каждое событие представляется в виде процесса с соответствующими входными и выходными потоками, накопителями данных, внешними сущностями и ссылки на другие процессы для описания связей между этим процессом и его окружением. Затем все построенные диаграммы сводятся в одну диаграмму нулевого уровня.

Каждый процесс на DFD, в свою очередь, может быть детализирован при помощи DFD или (если процесс элементарный) спецификации. При детализации должны выполняться следующие правила:

· Правило балансировки - при детализации подсистемы или процесса детализирующая диаграмма в качестве внешних источников или приемников данных может иметь только те компоненты (подсистемы, процессы, внешние сущности, накопители данных), с которыми имеют информационную связь детализируемая подсистема или процесс на родительской диаграмме.

· Правило нумерации - при детализации процессов должна поддерживаться их иерархическая нумерация. Например, процессы, детализирующие процесс с номером 12, получают номера 12.1, 12.2, 12.3 и т.д.

Спецификация процесса должна формулировать его основные функции таким образом, чтобы в дальнейшем специалист, выполняющий реализацию проекта, смог выполнить их или разработать соответствующую программу.

Спецификация является конечной вершиной иерархии DFD . Решение о завершении детализации процесса и использовании спецификации принимается аналитиком исходя из следующих критериев:

· Наличия у процесса относительно небольшого количества входных и выходных потоков данных (2-3).

· Возможности описания преобразования данных процессом в виде последовательного алгоритма.

· Выполнения процессом единственной логической функции преобразования входной информации в выходную.

· Возможности описания логики процесса при помощи спецификации небольшого объема (не более 20-30 строк).

Спецификации должны удовлетворять следующим требованиям:

· Для каждого процесса нижнего уровня должна существовать одна и только одна спецификация.

· Спецификация должна определять способ преобразования входных потоков в выходные.

· Нет необходимости (по крайней мере на стадии формирования требований) определять метод реализации этого преобразования.

· Спецификация должна стремиться к ограничению избыточности - не следует переопределять то, что уже было определено на диаграмме.

· Набор конструкций для построения спецификаций должен быть простым и понятным.

Фактически спецификации представляют собой описания алгоритмов задач, выполняемых процессами. Спецификации содержат:

Номер и/или имя процесса.

Списки входных и выходных данных.

Тело (описание процесса), являющееся спецификацией алгоритма или операции, трансформирующей входные потоки данных в выходные.

Известно большое количество методов, позволяющих описать тело процесса, соответствующие этим методам языки могут варьироваться от структурированного естественного языка или псевдокода до визуальных языков проектирования.

Структурированный естественный язык применяется для читабельного, достаточно строгого описания спецификаций процессов. Он представляет собой разумное сочетание строгости языка программирования и читабельности естественного языка и состоит из подмножества слов, организованных в определенные логические структуры, арифметических выражений и диаграмм.

В состав языка входят следующие основные символы:

· глаголы, ориентированные на действие и применяемые к объектам;

· термины, определенные на любой стадии проекта ПО (например, задачи, процедуры, символы данных и т.д.);

· предлоги и союзы, используемые в логических отношениях;

· общеупотребительные математические, физические и технические термины;

· арифметические уравнения;

· таблицы, диаграммы, графы;

· комментарии.

К управляющим структурам языка относятся последовательная конструкция, конструкция выбора, итерация (цикл).

При использовании структурированного естественного языка приняты следующие соглашения:

логика процесса выражается в виде комбинации последовательных конструкций, конструкций выбора и итераций;

глаголы должны быть активными, недвусмысленными и ориентированными на целевое действие (заполнить, вычислить, извлечь, а не модернизировать, обработать и т.д.);

логика процесса должна быть выражена четко и недвусмысленно.

При построении иерархии DFD переходить к детализации процессов следует только после определения содержания всех потоков и накопителей данных, которое описывается с помощью структур данных. Для каждого потока данных формируется список всех его элементов данных, затем элементы данных объединяются в структуры данных, соответствующие более крупным объектам данных (например, строкам документов или объектам предметной области).

Каждый объект должен состоять из элементов, являющихся его атрибутами. Структуры данных могут содержать альтернативы, условные вхождения и итерации. Условное вхождение показывает, что данный компонент может отсутствовать в структуре (например, структура «данные о страховании» для объекта «служащий»). Альтернатива означает, что в структуру может входить один из перечисленных элементов. Итерация предусматривает вхождение любого числа элементов в указанном диапазоне (например, элемент «имя ребенка» для объекта «служащий»).

Для каждого элемента данных может указываться его тип (непрерывные и дискретные данные). Для непрерывных данных могут указываться единицы измерения (кг, см и т.п.), диапазон значений, точность представления и форма физического кодирования. Для дискретных данных может указываться таблица дискретных значений.

После построения законченной модели системы ее необходимо верифицировать (проверить на полноту и согласованность). В полной модели все ее объекты (подсистемы, процессы, потоки данных) должны быть подробно описаны и детализированы. Выявленные не детализированные объекты следует детализировать, вернувшись на предыдущие шаги разработки. В согласованной модели для всех потоков данных и накопителей данных должно выполняться правило сохранения информации: все поступающие куда-либо данные должны быть считаны, а все считываемые данные должны быть записаны.

Сравнительный анализ SADT-моделей и диаграмм

потоков данных

Итак, практически во всех методах структурного подхода (структурного анализа) на стадии формирования требований к ПО используются две группы средств моделирования:

· диаграммы, иллюстрирующие функции, которые система должна выполнять, и связи между этими функциями - DFD или SADT (IDEF0);

· диаграммы, моделирующие данные и их отношения (ERD).

Таким образом, наиболее существенное различие между разновидностями структурного анализа заключается в средствах функционального моделирования. С этой точки зрения все разновидности структурного анализа могут быть разбиты на две группы - использующие DFD (в различных нотациях) и использующие SADT - модели. Соотношение применения этих двух разновидностей структурного анализа в существующих CASE - средствах составляет 90% для DFD и 10% для SADT.

Сравнительный анализ этих двух разновидностей методов структурного анализа проводится по следующим параметрам:

· Адекватность средств решаемым задачам;

· Согласованность с другими средствами структурного анализа;

· Интеграция с последующими стадиями ЖЦ ПО (прежде всего со стадией проектирования).

Адекватность средств решаемым задачам. Модели SADT используются для моделирования организационных систем. С другой стороны, не существует никаких принципиальных ограничений на использование DFD в качестве средства построения статистических моделей деятельности организации. Метод SADT успешно работает только при описании стандартизированных бизнес-процессов в зарубежных корпорациях, поэтому он и принят в США в качестве типового.

Если же речь идет не о системах вообще, а о ЭИС, то здесь DFD вне конкуренции. SADT - диаграммы оказываются значительно менее выразительными и удобными при моделировании ЭИС.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.