на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Биокерамика на основе фосфатов кальция
p align="left">Для плотной керамики общепринятыми являются такие характеристики, как прочность при изгибе и растяжении, трещиностойкость. Предел прочности при изгибе, сжатии и растяжении ГА-керамики находится в диапазоне 38 - 250, 120 - 150 и 38-300 МПа [21,220], соответственно. Разброс данных вызван статистическим характером распределения прочности, влиянием остаточной микропористости, размером зерна, примесями и т.д. С увеличением отношения Ca/P, прочность увеличивается, достигая пиковой величины около Са/P=1,67, и резко уменьшаясь при Ca/P>1,67 [21].

Модуль функции Вейбулла статистического распределения прочности плотной керамики находится между 5 и 18, это означает, что она ведет себя как типичный хрупкий материал.

Важной характеристикой керамики является ее устойчивость к замедленному разрушению в коррозионно-активных средах. Под действием таких сред и механических напряжений в керамике происходит подрастание существующих микроструктурных дефектов. Скорость этого процесса, V = AKn (А - постоянная, К - коэффициент интенсивности приложенных напряжений), зависит от величины показателя степени n. Чем больше значение n, тем выше устойчивость материала к замедленному разрушению. Для определения значения n может быть использован метод динамической усталости, заключающийся в нахождении зависимости прочности от скорости деформирования образца [24]. Коэффициент n может изменятся в широких пределах, например от 26 до 80 при испытаниях в сухих условиях (по сравнению с n=30 для керамики из оксида алюминия). Однако, он снижается до величины 12-49 во влажной среде, показывая высокую чувствительность ГА-керамики к замедленному росту трещины [21].

Модуль Юнга плотной керамики находится на уровне 35 - 120 ГПа [21]. Его величина зависит от остаточной пористости и присутствия примесей. Модуль Юнга, измеряемый при изгибе, равен 44 - 88 ГПа. Твёрдость по Виккерсу плотной керамики равна 3 - 7 ГПа. Плотная ГА-керамика проявляет сверхрпластичность при температуре от 1000 до 1100 оС, с механизмом деформации, основанном на проскальзывании по границам зёрен. Сопротивление износу и коэффициент трения плотной ГА-керамики сравнимы с таковым у зубной эмали. Значения трещиностойкости (К1с) находится на уровне 0,8 - 1,2 МПам1/2 причём она уменьшается почти линейно с увеличением пористости. Удельная работа разрушения составляет от 2,3 до 20,0 Дж/м2.

Низкие значения трещиностойкости К1с и модуля Вейбулла вместе с высокой восприимчивостью к замедленному росту трещины указывают на низкую надёжность изделий из плотной ГА-керамики.

Нами проведены сравнительные исследования влияния среды на замедленное разрушение и прочность ГА- и ФГА-керамики. На рис. 46а. показаны графики динамической усталости для ГА-керамики, на рис. 46б. - аналогичные данные для ФГА-керамики, образцы которых были испытаны в различных средах. Как можно видеть, прочность керамики снижается с уменьшением скорости деформирования, что обусловлено увеличением времени пребывания образца материала под нагрузкой в коррозионно-активной среде, приводящим к субкритическому подрастанию трещины в процессе нагружения до критического ее размера lc. Этот размер соответствует критерию Гриффитса (59) для перехода трещины к самопроизвольному, неконтролируемому распространению [221]:

? = ? (Е?/lc)1/2, (59)

где ? - коэффициент, зависящий от напряженного состояния; E - модуль нормальной упругости; ? - поверхностная энергия разрушения; lc - критический размер трещины.

Средние значения прочности зависели как от состава керамики, так и от среды проведения испытаний. На рис. 47 приведены примеры графиков статистического распределения прочности для ГА образцов. Использовали двухпараметрическое представление функции Вейбулла [24].

P = 1 - exp [-(V/V0)(?/?0)m] (60)

и эстиматор вида Pi = i/(N + 1), (61)

где Pi - вероятность разрушения i-го образца из выборки размером N; V/V0 - относительный напряженный объем в образце; ?0 - нормирующий множитель; m - модуль функции Вейбулла, характеризующий степень однородности распределения прочности. Графики для ФГА образцов имеют сходный характер.

Данные, полученные по результатам механических испытаний, представлены в табл. 14. Можно отметить следующие особенности влияния состава керамики и среды на механические свойства образцов. Во-первых, прочность ФГА-керамики существенно выше прочности керамики из чистого гидроксиапатита. Это может быть обусловлено меньшей ее пористостью (открытая пористость образцов, измеренная гидростатическим взвешиванием, составила 0,4 и 0,2% для ГА и ФГА, соответственно), поскольку прочность керамики, как известно [222], снижается с увеличением содержания пор по экспоненциальному закону. Введение фтора в состав материала при синтезе не снижает его прочности, в отличие от керамики, в которую фтор вводился в результате твердофазного взаимодействия ГА с фторапатитом (ФА) [4]. Физико-химическая среда оказывает существенно большее влияние на среднюю прочность ГА-керамики, по сравнению с ФГА-керамикой. Вода и синтетическая слюна снижают прочность ГА примерно на 30%, тогда как прочность ФГА-материала снижается лишь на 7 и 15%, соответственно. Это может быть объяснено снижением растворимости при замещении гидрокси-групп ионами фтора.

Значения показателя n, характеризующего устойчивость керамики к замедленному разрушения в процессе коррозии под напряжением, хорошо согласуются с известными данными для пористой ГА-керамики (пористость до 40%) при испытаниях на воздухе (n = 20) и в 0,9%-ном физиологическом растворе NaCl для инъекций (n = 12) [4]. В нашем случае получены примерно те же самые значения n, в диапазоне от 11 до 23. Можно отметить, что ГА керамика несколько более чувствительна к коррозии под напряжением в воде и синтетической слюне по сравнению с ФГА-керамикой, что объясняется меньшей ее растворимостью в водных растворах. Определенного вывода о механизме коррозии под напряжением сделать нельзя из-за того, что n имеет промежуточные по величине значения от характерных для механизма диссоциативной хемосорбции (n > 20) до «химического разрыва ионных связей с учетом экранирующего действия среды на напряженность электростатического поля» (n < 20) [222]. Из приведенных в табл. 14 данных следует, что наличие щелочных ионов, ионов хлора и НСО3? групп в растворе, моделирующем слюну, не оказывает значительного влияния на коррозию под напряжением.

Изменение модуля функции Вейбулла при испытаниях в коррозионно-активных средах по сравнению с его значением в «инертной» среде проведения испытаний обычно связывают с субкритическим подрастанием трещиноподобных дефектов микроструктуры материала. Снижение модуля Вейбулла или трансформация функции статистического распределения прочности из одномодальной в бимодальную, с областью пониженного значения модуля Вейбулла при малых значениях прочности, указывает на то, что наиболее опасные дефекты микроструктуры подрастают в процессе нагружения и, следовательно, происходит процесс коррозии под напряжением. Приведенные в табл. 14 данные по значениям модуля Вейбулла вполне согласуются с этими положениями, подтверждая, что образцы как ГА - так и ФГА-керамики подвержены коррозии под напряжением.

Таким образом, частичное замещение гидрокси-групп на ионы фтора позволяет повысить прочность и сопротивление замедленному разрушению керамики на основе ГА, приводя к большей ее надежности и долговечности при имплантации.

Одно из наиболее важных применений плотной керамики - подкожные устройства для продолжительного амбулаторного брюшного диализа, мониторинг давления и сахара в крови, или оптическое наблюдение за внутренними тканями тела [21]. Плотная ГА-керамика проявляет превосходную биосовместимость с тканью кожи, намного лучше, чем силиконовая смола, широко используемая для той же самой цели.

Искусственные корни зубов, изготовленные из плотной ГА-керамики, изучались in vivo и в клинических условиях. Присоединение десны к имплантату из ГА было сравнимо с фиксацией корня естественным связующим веществом. Также наблюдались положительные результаты в связывании кости с имплантатом. Это важно, поскольку неадекватное уплотнение приводит к чрезмерной подвижности зуба и в результате к его потере. К сожалению, большая часть из нагруженных зубных имплантатов были разрушены в течение года после внедрения из-за недостаточных механических свойств керамики [21].

В настоящие время основные усилия направлены на разработку в области технологии пористой керамики, содержащей взаимопроникающие канальные поры. Такая керамика может быть использована для заполнения костных дефектов, например, верхней суставной поверхности большеберцовой кости [176], как матрикс для клеточных культур или в системе доставки лекарственных препаратов [223-227]. Взаимопроникающие поры должны иметь диаметр не менее 100-135 мкм, чтобы обеспечивать доступ крови к контактным поверхностям [228,229], а также прорастание и фиксацию костной ткани [226-228]. Поры меньшего размера также необходимы, поскольку они способствуют повышению адсорбции протеинов и адгезии остеогенных клеток. Таким образом, желательно, чтобы пористая керамика имела бимодальное распределение пор по размерам (крупные и тонкие поры).

Известно большое число исследований по технологии пористой керамики на основе ГА. Пористую керамику получают, в основном, методом выгорающих добавок; пропиткой и последующим обжигом органических (полиуретановых) губок, либо вспениванием, например при введении пероксида водорода [229-236]. При этом пористость, например, при использовании додецилбензолсульфоната натрия, достигает до 50-60 %, а в случае глицина или агар-агара - порядка 80 % [1]. С использованием выгорающей добавки (например муки) с размером частиц 40 - 200 мкм, вводимой в количестве 37 масс. %, удалось получить ГА керамику с объемным содержанием пор до 46 % [230]. В качестве выгорающих добавок используют также полимеры - желатин, коллаген, хитозан и др., при этом открытая пористость достигает 85%. Также используют коралл (основное вещество СаСО3), который в ходе гидротермальной обработки переходит в ГА (250 оС, 24-48 ч), сохраняя исходную микроструктуру и открытую пористость [21].

Нами разработан способ получения пористой керамики, содержащей тонкие и крупные взаимопроникающие поры в количестве до 70 об.% [229,236]. Для изготовления пористой керамики с бимодальным распределением пор получали композиционные гранулы ГА-биополимер, которые подвергали одноосному прессованию и последующему обжигу. Выжигание биополимера из гранул приводило к формированию тонких пор в гранулах (интрапоры), укладка гранул обусловливала формирование межгранульных взаимосвязанных пор (интерпоры) (рис. 48).

В качестве исходного использовали порошок ГА, полученный методом осаждения из водного раствора двухзамещенного фосфата аммония и хлорида кальция аммиаком. Порошок имел размер агломератов менее 1 мкм и удельную поверхность по БЭТ 5,5 м2/г. Гранулы ГА-биополимер изготавливали с использованием эффекта несмешивающихся жидкостей. Суспензию ГА в водном растворе биополимера диспергировали лопастной мешалкой при скорости ее оборотов 200-500 мин-1 в диспергирующей жидкой среде, не смешивающейся с водным раствором биополимера. Под действием сил поверхностного натяжения образовывались гранулы практически идеальной сферической формы. Размеры гранул зависели от концентрации суспензии, температуры диспергирующей жидкости и скорости вращения лопасти мешалки. Гранулы осаждали на воронке Бюхнера, промывали и подвергали сушке. Рассевом на наборе сит выделяли фракцию 400-600 мкм, которую и использовали в последующих экспериментах.

Высушенные гранулы засыпали в металлические пресс-формы и подвергали одноосному прессованию под давлением от 10 до 100 МПа с получением сырых образцов диаметром 10 и высотой 4 мм. Эти дисковые образцы затем сушили на воздухе 24 ч и обжигали при температуре 12000С с выдержкой при этой температуре 1 ч в атмосфере воздуха. Измеряли содержание и распределение по размерам открытых пор в образцах, исследовали их микроструктуру, измеряли прочность при диаметральном сжатии при скорости нагружения 1,0 мм/мин. По результатам испытаний на диаметральное сжатие рассчитывали прочность материалов при растяжении

?= 2P/?dh (62)

где ? - прочность при растяжении; Р - разрушающая нагрузка; d и h - диаметр и высота образца, соответственно.

На рис. 49 показаны гранулы ГА-биополимер. Как видно, гранулы имеют правильную сферическую форму. При выбранном соотношении ГА/биополимер, обжиг гранул при 12000С приводит к содержанию в них открытых пор до 60 об.%. Ртутная порометрия показала, что основной является популяция пор размером 4-10 нм (до 68% от общего содержания пор), однако имеются также более крупные поры, размером 1-14 мкм. Микроскопические исследования также подтверждают наличие таких, более крупных пор. Возможно, что эти поры соединены между собой щелевидными каналами, размеры которых и регистрирует ртутная порометрия, поскольку они являются критическими для проникновения в образец ртути под давлением [237]. На рис. 50 показана микроструктура поверхности керамики.

Межгранульная пористость обусловливается упаковкой сферических гранул. Монодисперсные гранулы могут быть упакованы в свободной засыпке в сырую заготовку, содержащую 30-40 об.% межгранульных пор [238]. Такая укладка гранул соответствует координационному числу примерно 7:

N = 11,6(1 - Р) (63)

где Р - объемная доля открытых пор [239].Это значение близко к координационному числу упаковки атомов в объемно-центрированной кубической (о.ц.к.) решетке. Минимальное сечение порового пространства в укладке монодисперсных сферических гранул может быть оценено как соответствующее плоскости (100) о.ц.к. структуры. Согласно этому, укладка монодисперсных гранул размером 500 мкм обеспечивает минимальное сечение порового пространства примерно 100 х 200 мкм2, что соответствует требованию минимального размера пор 100-135 мкм, необходимого для остеоинтеграции.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.