на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Биокерамика на основе фосфатов кальция
p align="left">Полагают, что критической для сохранения фазового состава верхней температурой спекания ГА является температура около 1300 0С, причем точное ее значение зависит от атмосферы, в которой проводится спекание, а именно, от парциального давления паров воды [21]. Повышение содержания влаги в среде спекания стабилизирует ГА при высоких температурах. В работах [176,180], однако, была продемонстрирована устойчивость ГА с соотношением Са/Р = 1,68 к термическому разложению вплоть до температуры 1450 0С при выдержках до 3 ч. Повышение температуры до 1500 0С приводит к разложению ГА. Плотность, близкая к теоретической, достигается при температуре спекания тонкодисперсных порошков ГА 1300 0С с выдержкой при этой температуре в течение 3 ч. Дальнейшее повышение температуры приводит к собирательной рекристаллизации - размер зерна увеличивается от 4 до 14 мкм с повышением температуры спекания от 1300 до 1450 0С. Зависимость размера зерна от температуры термообработки описывается уравнением Аррениуса. Оцененная по этой зависимости кажущаяся энергия активации равна 196 кДж/моль [176].

Представляется очевидным, что температурно-временные параметры процесса спекания должны зависеть от предыстории порошка и его дисперсности, влияющих на активность при спекании, а также и от фазового состава. Увеличение размера частиц исходного порошка ГА от 1 до 4,2 мкм приводит к значительному повышению температуры начала интенсивной усадки при спекании. Несмотря на более высокую плотность сырых прессовок, полученных из крупных порошков, достигаемая при спекании плотность увеличивается с уменьшением размера частиц. Энергии активации процесса роста зерна ГА при спекании составляет 122 кДж/моль, что соответствует нижней границе интервала известных значений энергии активации самодиффузии в ГА (140-240 кДж/моль) [1]. Однако систематические исследования по росту зерна и энергии активации этого процесса в материалах на основе ГА не проводились.

Уплотнение при спекании может быть интенсифицировано посредством формирования жидкой фазы при температурах спекания. В качестве добавки, формирующей жидкую фазу при спекании, может быть также использовано фосфатное или силикатное стекло. Спекание ГА с использованием добавки стекла Bioglass® состава (в мол.%): Р2О5 - 2,6; СаО - 26,9; Nа2О - 24,0; SiO2 - 46,1 позволило не только повысить механические свойства керамики, но и улучшить ее биологическое поведение. На поверхности такой керамики при выдержке в жидкости, моделирующей плазму крови, образуется слой апатита [181-182].

В работе [183] показано, что фосфаты щелочных металлов интенсифицируют процесс уплотнения ГА как при традиционном спекании, так и горячем прессовании вследствие образования жидкой фазы. Введение добавок - соединений Na3PO4 и K3PO4, используемых также в качестве источников фосфора при получения осадков ГА мокрым способом, не оказывает отрицательного влияния на биосовместимость материалов. Однако, особенности спекания при введении таких добавок, и влияние добавок на механические свойства керамики детально изучены не были.

Нами было исследовано влияние добавки фосфата натрия, вводимой в количестве 1 и 2%, на усадку при спекании, формирование микроструктуры, фазового состава и механических свойств гидроксиапатитовой керамики [184]. Установлены условия достижения максимума механических свойств плотноспеченной керамики. На рис. 14 показаны кривые непрерывной усадки образцов ГА без добавки и с добавкой Na3PO4. В интервале температур до 500-800оС происходит лишь некоторое термическое расширение образцов (до 0,3%). Начало усадки образцов 1-3 соответствует температурам 750-1000оС. В начале этого интервала усадка незначительна. Можно полагать, что в этом интервале спекание происходит по механизму поверхностной диффузии, при котором наблюдается сфероидизация частиц и образование контакта между ними, но не происходит сближение их центров [173]. Далее, с повышением температуры, начинается ускоренная усадка, что свидетельствует о лимитирующей роли объемной диффузии в процессах уплотнения. Начало усадки модифицированных составов происходит при следующих температурах: состав с 1% Na3PO4 - 800 оС, с 2% Na3PO4 - 750оС. Достижение 4% усадки соответствует температурам:, 1180оС с 1% Na3PO4, 1040оС с 2% Na3PO4, когда, по-видимому, в образцах образуется развитая система стыкующихся границ.

В интервале 1230-1300оС образцы ГА без добавки характеризуются максимальной скоростью усадки. Этот участок соответствует, по-видимому, интенсивному росту шеек с образованием новых границ между зернами, удалению открытых пор. Основная роль в уплотнении принадлежит, по-видимому, объемной диффузии вакансий. Усадка при конечной температуре достигает 10,5%.

Образцы с добавкой Na3PO4 начинают спекаться раньше (на 70-130оС), чем ГА без добавки, но процесс уплотнения протекает медленнее, хотя величина усадки больше и при 1300оС составляет 12,5 и 12,9%, соответственно для составов с 1 и 2 % Na3PO4 соответственно. Таким образом, добавка фосфата натрия интенсифицирует процесс уплотнения вследствие образования, по-видимому, жидкой фазы.

Участок 1300-1350оС соответствует максимальным значениям усадки и плотности при практически нулевой открытой пористости. Уплотнение здесь происходит за счет медленного процесса удаления изолированных пор и рекристаллизации. Все образцы имеют практически одинаковые значения плотности: 98,4-98,7% от теоретической.

Таким образом, спекание составов на основе ГА с добавкой Na3PO4 до плотного состояния происходит при температурах на 50-100оС меньше, чем спекание ГА без добавок. Можно предположить, что ускорению процесса уплотнения способствует жидкая фаза, образующаяся при нагреве прессовок в результате взаимодействия добавки с ГА. Обычно появление расплава существенно увеличивает площадь соприкосновения между частицами, а следовательно скорость поверхностной и объемной диффузии [173]. Кроме того, активизация спекания может быть связана с реакциями дефектообразования в элементарной ячейке кристаллов Ca10(PO4)6(OH)2 в результате частичного замещения Ca2+ на Na+ . При образовании структурных вакансий в твердых растворах наблюдается возрастание кажущегося коэффициента диффузии, что приводит к увеличению скорости всех процессов: спекания, рекристаллизации, коалесценции [185].

При исследовании фазового состава в зависимости от температуры обжига установлено, что во всех образцах керамики без добавок основной фазой является гидроксиапатит. С увеличением температуры от 1100 до 1350оС основные дифракционные линии, соответствующие ГА, смещаются в сторону больших углов, а величина межплоскостных расстояний уменьшается, что свидетельствует, по-видимому, о процессе дегидратации и разупорядоченности структуры гидроксиапатита. Фазовый состав керамики, спеченной при 1100оС, отвечает полностью фазе ГА (рис.15а). В интервале температур 1200-1350оС отмечено появление небольшого количества (3-5%) 3CaO*P2O5 и 4CaO*P2O5 (1350оС) (рис.15б).

Микроскопические исследования этих же образцов в проходящем свете (иммерсионные препараты) подтверждают данные рентгенофазового анализа. Измеренные оптические константы (nо=1,651, ne=1,644, no-ne=0,007) полностью соответствуют соединению ГА стехиометрического состава. Кристаллы ГА имели ярко выраженные цвета интерференции, характерные для кристаллов гексагональной сингонии. Эти результаты свидетельствуют о высокой термической стабильности исходного ГА. На дифрактограммах керамики с добавкой Na3PO4, помимо линий ГА, имеются линии соединения типа ?-NaСаPO4 с характерными дифракционными отражениями (d,10-1нм=3,83; 3,80; 2,74; 2,70; 2,66; 2,20), и рефлексы, соответствующие следам CaO (рис. 16). Следует отметить, что отражения (2,20; 2,66; 3,80, остальные перекрываются дифракционными максимумами ГА), соответствующие ?-NaСаPO4 , становится более четкими, их интенсивность возрастает как с увеличением количества добавки, так и с ростом температуры (рис.16б), что свидетельствует, очевидно, о повышении степени совершенства кристаллов. Эта кристаллическая фаза обнаружена также при изучении под микроскопом (проходящий свет) в иммерсионных препаратах керамики с 2% Na3PO4 после спекания при 1350оС. Она анизотропна и имеет показатели преломления: np=1,518 и ng=1,564, т.е. значительно ниже, чем ГА. Эти новообразования расположены и между кристаллами ГА в виде отдельных округлых и призматических частиц размером до 3мкм и тонких прослоек толщиной менее 1 мкм, и соизмеримы с шириной границ кристаллов. Сами зерна ГА имеют частично оплавленные края. Следовательно, предположение о прохождении спекания с участием жидкой фазы в материалах системы Ca10(PO4)6(OH)2 -Na3PO4 имеет косвенное подтверждение.

Изменение среднего размера кристаллов в керамике, в зависимости от температуры спекания и количества добавки Na3PO4, приведены на рис. 17 и в табл. 8. С увеличением температуры спекания от 1100 до 1350оС средний размер кристаллов возрастает в 12-17 раз. В интервале температур 1100-1200оС для образцов без добавки и с добавкой 1 и 2% Na3PO4 наблюдается линейное увеличение размеров кристаллов с ростом температуры обжига: от менее 0,5 до 2,2 мкм; от 0,7 до 3,1 мкм и от 0,9 до 3,5 мкм соответственно. При нагревании образцов ГА от 1200 до 1350оС происходит увеличение среднего размера кристаллов от 2,2 до 8,5 мкм. Рост кристаллов керамики с добавкой Na3PO4 происходит интенсивнее как с увеличением ее концентрации, так и температуры обжига. Кристаллы керамики состава 3 имеют средний размер 3,5 мкм при 1200оС и 10,9 мкм при 1350оС. Следует отметить изменения значений максимального и минимального размера кристаллов (табл. 8). Структура керамики с плотностью до 92,4-97,7% после спекания при 1200оС характеризуется мелкими кристаллами изометричной формы со средним размером 2,2-3,5 мкм, причем имеет место достаточно большой разброс размеров (для каждого состава), который увеличивается в соответствии с количеством Na3PO4.

После спекания при 1250оС керамика ГА имеет плотность 96,8%, при этом максимальный размер кристаллов достигает 7,9 мкм, а средний составляет 3,2 мкм. В керамике модифицированных составов с 1 и 2% Na3PO4, имеющей плотность 97,2% и 98,1%, максимальный размер достигает 9,0 мкм и 12,0 мкм, а средний размер зерен практически одинаков и составляет 4,1-4,8 мкм. По-видимому, происходит рекристаллизация, активируемая жидкой фазой. В интервале температур 1300-1350оС рекристаллизация интенсифицируется. Форма кристаллов изменяется от изометричной до призматической, при этом структура отличается неравномерным распределением кристаллов по размерам.

На рис. 18 показана зависимость прочности материалов в зависимости от температуры спекания в интервале 1100-1350оС. С увеличением температуры от 1100 до 1200оС прочность повышается и достигает максимальных значений (60-95 МПа) при 1200оС, а затем снижается. Прочность керамики без добавки нарастает медленнее с температурой спекания и достигает лишь 65 МПа при 1250оС. Это связано со сравнительно замедленным уплотнением таких образцов. Прочность составов с добавкой Na3PO4 более высокая и в интервале температур обжига 1100-1200оС возрастает до 85-95 МПа, причем, с увеличением концентрации добавки повышаются значения прочности. Это связано, вероятно, как с лучшим уплотнением модифицированных материалов, так и упрочняющим действием фазы (?- NaСаPO4). Термообработка при 1250-1350оС приводит к снижению прочности образцов до практически одинаковых значений 55-60 МПа, что связано, по-видимому, с ростом кристаллов.

Таким образом, фосфат натрия эффективно способствует уплотнению керамики при спекании, позволяет понизить температуру спекания для получения плотноспеченной керамики на более чем 500С и избежать тем самым разложения ГА при обжиге. Керамика, изготовленная с введением 1% добавки, имеет существенно более высокие механические свойства по сравнению с керамикой гидроксиапатита без добавки. При температуре обжига 12500С, соответствующей достижению максимального уровня свойств, не происходит значительного роста зерна, а дальнейшее повышение температуры спекания приводит к собирательной рекристаллизации и снижению уровня свойств.

Горячее изостатическое прессование позволяет значительно снизить температуру достижения полного уплотнения керамики. Авторы [186] проводили горячее изостатическое прессование прессовок из порошка ГА, покрытых слоем нитрида бора и помещенных в вакуумируемую ампулу из стекла пирекс. Это позволило получить плотную, прозрачную ГА-керамику при температуре горячего изостатического прессования выше 8000С и давлении газа 100 МПа.

В работе [187] было исследовано влияние на свойства ГА-керамики соотношения Са/Р в исходном порошке ГА. Установлено, что спекание ГА малоэффективно при содержании ТКФ более 40 масс. %: материалы имеют пониженную прочность при изгибе. Однако наилучшие прочностные показатели были получены не на стехиометричном исходном порошке ГА, а для смеси ГА с ТКФ с соотношением Са/Р=1,6-1,66. Эти результаты подтверждаются и другими исследованиями [188], где установлено, что плотность, прочность при изгибе и твёрдость по Кнупу спечённой (на воздухе, выдержка 4 ч) ГА-керамики увеличивается с ростом температуры спекания, достигая максимума при 1150°С, и уменьшается при дальнейшем увеличении температуры, из-за разложения ГА на ТКФ и тетракальцийфосфат. При спекании в вакууме разложение ГА начинается при более низких температурах и механические свойства у такой керамики хуже, чем для спечённой на воздухе керамики. Влияние отклонений от стехиометрии ГА на значение прочности керамики при изгибе изучались в работе [189]. Лучшие результаты получены для ГА, содержащего ТКФ, тогда как для почти чистого ГА прочность при изгибе уменьшается до очень низких значений, соответствующих ГА, содержащему СаО. Предполагается, что упрочнение ГА происходит из-за формирования остаточных напряжений, возникающих за счёт ? > ? перехода в ТКФ.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.