на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле

Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле

Дипломная работа

на тему:

"Об интегральных формулах Вилля-Шварца

для трехсвязных областей и ее применение

к краевым задачам Дирихле".

Оглавление. Введение. §1. О задачах Дирихле. а) Задача Дирихле для круга – Задача Пуассона (классическая формулировка). б) Обобщенная задача Дирихле в) Видоизмененная задача Дирихле. г) Классическая задача Дирихле для многосвязных областей. д) Общая формулировка задачи Дирихле. е) Задача Неймана. §2. О задачах Шварца-Пуассона. а) Интеграл Шварца для круга. б) Интегральная формула Пуассона. в) Интеграл Пуассона для внешности круга. г) Задача Дирихле-Пуассона для полуплоскости. д) Задача Дирихле для кругового кольца. §3. Интегральная формула Анри Вилля – проблема Дирихле для кругового кольца (1912). а) Преобразование интегральной формулы А.Вилля. б) Функции Вейерштрасса (I(u), Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле (u), Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле (u)). §4. О некоторых изменениях теории конформного отображения к краевым задачам. а) Об структурном классе интегральных представлений. б) О решении задачи Дирихле методом Чизотти для многосвязных областей. в) Интегральная формула Чизотти для заданных областей – решение задачи Дирихле для соответствующих областей. §5. Об интегральных представлениях Пуассона-Дирихле для заданных областей. §6. Интегральная формула Чизотти-Пуассона-Дирихле для конечных трехсвязных областей. Литература. Введение. В данной дипломной работе исследованы некоторые интегральные формулы (классические представления) аналитических и гармонических функций в заданных многосвязных областях. Даны новые методы решения классических краевых задач методом интегральных представлений аналитических функций, используя метод конформного отображения канонической области Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле (z) на соответствующие области GДиплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле (w). Используя фундаментальные интегральные формулы для круга и кругового кольца, автор обобщает задачи Пуассона, Дирихле, Дини, Шварца, Кристофеля-Шварца и Чизотти для многосвязных областей. В частности, найдены интегральные формулы для эксцентрического кругового кольца, двух-трехсвязных областей. И нашли применение их к решению классических краевых задач типа Дирихле-Неймана. Целью нашего исследования в предлагаемой работе являются: 1. Разобраться в вышеуказанных (непростых) известных классических задачах типа Шварца, Дирихле, Пуассона и Чизотти [1] – [7]. 2. Творчески изучая и классифицируя их, найти обобщение и решение этих задач для конкретных многосвязных областей (см. оглавление). Данная работа состоит из введения и 6 параграфов. В введении обосновывается постановка задачи, показывается актуальность рассматриваемой темы дипломной работы, дается краткий анализ и перечень работ по данному исследованию (1 – 24). Параграфы (§1, §2) не только вспомогательные материалы, необходимые для понимания основного содержания дипломной темы, но и являются справочной классификацией о задачах Дирихле (классическая, обобщенная, общая, видоизмененная) для любой связности заданной области GДиплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле = GДиплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле (w) и задачах Шварца-Пуассона (для круга, кругового кольца, внешности кругов, для полуплоскости). В §3 интегральная формула Анри Вилля – проблема Дирихле для кругового кольца в форме Ахиезера преобразована и получена новая компактная, контурная, структурная формула А.Вилля для кругового кольца. Здесь же, ввиду важности трех функций I(u), Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле (u) и Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле (u ) для практического приложения и простоты реализации на ЭВМ, мы рассмотрели все варианты представления рядов данных функций (37) – (48) по справочникам [19] – [22] специальных функций (а), б)). Параграфы §4 - §6 – основное содержание самостоятельной работы автора: рассмотрены применение теории комфорного отображения к краевым задачам – решение задачи Дирихле методом Чизотти для заданных областей (§4). В §5 – интегральные представления Пуассона-Дирихле для круга, кругового кольца и, наконец, §6 – интегральная формула Чизотти-Шварца-Пуассона-Дирихле для конечных трехсвязных областей. Оглавление – ясное представление о единстве всех классических задач и о содержании предлагаемой работы (см. оглавление!). В данной работе все найденные решения выписываются почти в явном виде и параметры, фигурирующие в постановке задачи, определяются явно и однозначно. Основное содержание дипломной работы являются некоторыми обобщениями курсовых работ и самостоятельной работы автора. §1. О задачах Дирихле. а) Задача Дирихле для круга – Задача Пуассона (классическая формулировка). 1. Задача нахождения функции, гармонической в некоторой области была названа Риманом задачей Дирихле. В классическом виде эта задача формулируется следующим образом. Пусть на границе Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле области D+ задана непрерывная функция f(Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле ). Найти непрерывную в Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле и гармоническую внутри области D+ функцию U(z ), принимающую на границе значения f(Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле ). Таким образом, требуется, чтобы U(z) стремилась к f(Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле ), когда z Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле D+ стремится к Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , u(z) → f(Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле ), при zДиплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле . Задача Дирихле представляет интерес для физики. Так, потенциал установившегося движения несжимаемой жидкости, температура, электромагнитные и магнитные потенциалы – все являются гармоничными функциями. Примером физической задачи, приводящей к задаче Дирихле, служит определение температуры внутри пластинки при известных ее значениях на контуре. Из других физических задач возникла формулировка задачи Неймана. Найти гармоническую в области D+ функцию U(z) по заданным значениям ее нормальной производной Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле на Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , а также смешанной задачи Дирихле-Неймана. Найти гармоническую в D+ функцию по известным ее значениям на некоторых дугах границы Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле и значениям нормальной производной на остальной части Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле . Смешанная задача встречается главным образом в гидродинамике. Различные приложения этих задач можно найти, например, в книге Лаврентьев И.А. и Шабат Б.В. [1]. Итак, по многочисленности и разнообразию приложений задача Дирихле занимает исключительное место в математике. К ней непосредственно сводится основная задача в гидродинамике – задача обтекания, задачи кручения и изгиба в теории упругости. С нею же тесно связаны основные задачи статистической теории упругости. Мы будем заниматься плоской задачей, которая представляет для нас особый интерес как по обилию приложений, так и по большей разработанности и эффективности методов решения. 2. Совокупность гармонических функций – это совокупность всех решений уравнения Лапласа Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , (1) которое является одним из простейших дифференциальных уравнений с частными производными второго порядка. Подобно тому, как в случае обыкновенных дифференциальных уравнений для выделения одного определенного решения задают дополнительные условия, так и для полного определения решения уравнения Лапласа требуются дополнительные условия. Для уравнения Лапласа они формулируются в виде так называемых краевых условий, т.е. заданных соотношений, которым должно удовлетворять искомое решение на границе области. Простейшее из таких условий сводится к заданию значений искомой гармонической функции в каждой точке границы области. Таким образом, мы приходим к первой краевой задаче или задаче Дирихле: Найти гармоническую в области D и непрерывную в Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле функцию u(z), которая на границе D принимает заданные непрерывные значения u(Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле ). К задаче Дирихле приводится еще, кроме вышеперечисленных, отыскание температуры теплового поля или потенциала электростатического поля в некоторой области при заданной температуре или потенциале на границе области. К ней сводятся и краевые задачи других типов. б) Обобщенная задача Дирихле. В приложениях условие непрерывности граничных значений Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , является слишком стеснительным и приходится рассматривать обобщенную задачу Дирихле [1]: На границе Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле области D задана функция Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , непрерывная всюду, кроме конечного числа точек Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , где она имеет точки разрыва первого рода. Найти гармоническую и ограниченную в области D функцию u(z), принимающую значения u(z) = Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле во всех точках непрерывности этой функции. Если заданная функция Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле непрерывна, то обобщенная задача Дирихле совпадет с обычной, ибо условие ограниченности функции u(z) следует из условия ее непрерывности в Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле . Теорема единственности решения обобщенной задачи Дирихле: В данной области при заданной граничной функции Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле существует не более одного решения обобщенной задачи Дирихле. Решение обобщенной задачи Дирихле можно свести к решению обычной задачи Дирихле. Можно доказать, что: 1. для любой односвязной области D и любой кусочно-непрерывной с точками разрыва первого рода граничной функции Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле решение обобщенной задачи Дирихле существует. 2. решение обобщенной задачи Дирихле для единичного круга дается интегралом Пуассона Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле ) (2) 3. для произвольной области D, мы получим искомую формулу для решения обобщенной задачи Дирихле интегральной формулой Дж.Грина [12, 18]: Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , (3) где Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле - производная в направлении внутренней нормали к С, ds - элемент длины Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , соответствующей Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле - элемент внутренней нормали к Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле - фиксированная произвольная точка области D, а функция Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле ; Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , реализующая отображение D на единичный круг Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле и Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле - функция Грина для области D, гармоническую всюду в D кроме точки Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , где имеет плюс. Формула Грина (3) выражает решение задачи Дирихле для некоторой области D через логарифм конформного отображения D на единичный круг, т.е. сводит решение задачи Дирихле к задаче конформного отображения. И обратное верно. Итак, задача конформного отображения области на единичный круг и задача Дирихле для той же области эквивалентны, они сводятся друг к другу с помощью простых операций дифференцирования и интегрирования. в) Видоизмененная задача Дирихле. Пусть S+ - связная область, ограниченная простыми замкнутыми непересекающимися гладкими контурами Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , из которых первый охватывает все остальные. Под L мы будем подразумевать совокупность этих контуров Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , (Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле ). Через Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле - мы обозначим совокупность конечных областей Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле заключенных, соответственно, внутри контуров Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле и бесконечной области Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , состоящей из точек расположенных вне Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле . На контуры Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле мы наложим еще следующее условие: угол, составляемый касательной к Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле с постоянным направлением, удовлетворяет условию H; иными словами, мы будем считать, что L удовлетворяет условию Ляпунова [17,24]. Функция Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле удовлетворяет условию H на этом множестве, если для любых двух Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле переменной Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле на этом множестве Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , (4) где A и Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле - положительные постоянные показатели Гельдера, А – коэффициент, а Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле - показатель условия Н и при Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле =1 – условие Липшица, функции, удовлетворяющие условию Н называются непрерывными по Гельдеру и сильнее, чем обычное определение непрерывности. г) Классическая задача Дирихле для многосвязных областей [24]. Найти (действительную) функцию u(x,y), гармоническую в Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , по граничному условию u=f(t) на L, (5) где f(t) – заданная на L (действительная) непрерывная функция; в случае бесконечной области от функции u(x,y) требуется еще, чтобы она оставалась ограниченной на бесконечности, т.е. и стремится к вполне определенному пределу, когда z уходит в бесконечность. Напомним, что всякая функция u(z) гармоническая вне круга Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле в ряд. Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле ) абсолютно и равномерно сходящийся вне круга любого радиуса Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле поэтому uДиплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле при rДиплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле . Для некоторых применений не меньший интерес представляет и следующая задача, которая называется "видоизмененной задачей Дирихле". Термин этот введен в статье Н.И.Мусхелишвили и Д.З.Авазошвили [17]. Видоизмененная задача Дирихле – задача Дирихле для многосвязных областей. Найти функцию u(x,y), гармоническую в S+, непрерывную в Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , по следующим условиям: 1. u(x,y)=Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле Ф(z) является действительной частью функции Ф(z), голоморфной в S+; 2. она удовлетворяет граничному условию u=f(t)+Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле (t) на L, (6) где f(t) – заданная на Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле непрерывная функция Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , (7) где Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле постоянные не задаваемые заранее; в случае бесконечной области требование u(x,y)=f(t)+Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле на Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле заменяются требованием ограниченности u(x,y) на бесконечности. Можно показать, что постоянные Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле вполне определяются условиями самой задачи, если (произвольно) фиксировать одну из них. Если L состоит из единственного замкнутого контура, то различают два случая: а) р=0. Тогда S+ представляет собой конечную часть плоскости, ограниченную контуром Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле ; б) р=1, а контур Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле отсутствует. Тогда область S+ представляет собой бесконечную часть плоскости, ограниченную контуром Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле . Легко видеть, что в случае а) задачи А и В совпадают (если считать Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле =0) в случае б) эти задачи непосредственно сводятся одна к другой. Каждая из задач А и В не может иметь более одного решения (если Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле =0). д) Общая формулировка задачи Дирихле. Задача Дирихле – задача отыскания регулярной в области D гармонической функции и которая на границе Г области D совпадает с наперед заданной функцией Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле . Задачу отыскания регулярного в области решения эллиптического уравнения 2-го порядка, принимающего на перед заданные значения на границе области, также называется задачей Дирихле, или первой краевой задачей. Вопросы связанные с этой задачей, рассматривались еще К.Гауссом, а затем Дирихле. Для областей D с достаточно гладкой границей Г решение задачи Дирихле можно представить интегральной формулой Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , (8) где Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле - производная по направлению внутренней нормали в точке Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле функции Грина Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , характеризуемой следующими свойствами: 1. Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , при Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле 3 или Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , при Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле 2, где Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле - расстояние между точками Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле и Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле - площадь единичной сферы в Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле - регулярная в Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле гармоническая функция как относительно координат Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , так и относительно координат Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле ; 2. Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , когда Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле . Для шара, полупространства и некоторых других простейших областей функция Грина строится явно и формула (8) дает эффективное решение задачи Дирихле. Получаемые при этом для шара и полупространства формулы носят название формул Пуассона. Задача Дирихле является одной из основных проблем теории потенциала – теории гармонических функций. Для обобщенного по Винеру решения задачи Дирихле справедливо интегральное представление в виде формулы Вилля-Пуассона Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , (9) являющейся обобщением формулы (8). Здесь Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле - гармоническая мера множества Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле в точке Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле . Отсюда возникает возможность рассмотрения обобщенной задачи Дирихле для произвольных граничных функций Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , при этом можно требовать удовлетворения граничного условия лишь в некоторой ослабленной форме. Например, если Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле - область Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле с достаточно гладкой границей Г, а граничащая функция Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле имеет только точки разрыва 1-го рода, то можно требовать удовлетворения граничного условия лишь в точках непрерывности Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , для обеспечения единственности решения в точках разрыва требуется ограниченность решения. е) Задача Неймана. Наряду с задачей Дирихле для некоторых приложений важно рассмотреть так называемую вторую краевую задачу, или задачу Неймана: Найти гармоническую в области Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле функцию Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , зная значения ее нормальной производной на границе С: Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле (10) и значение Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле в какой-либо точке Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле в области Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле . Для определенности мы будем предполагать, что в (10) рассматривается внешняя нормаль, что означает угол, образованный этой нормалью с осью х. Функция Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле может иметь на Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле конечное число точек разрыва 1-го рода, функция и ее частные производные первого порядка предполагаются ограниченными. Следующая теорема выражает от нормальной производной гармонической функции: Если функция Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле гармонична в односвязной области Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле и непрерывна вместе со своими частными производными в Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , то Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , (11) где Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле - граница области Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле обозначает производную в направлении нормали к Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , а Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле - дифференциал дуги. Из этой теоремы следует, что для разрешимости задачи Неймана необходимо выполнения соотношения Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле . (12) Доказывается единственность решения задачи Неймана и при доказательстве единственности решения задачи Неймана можно ограничиться случаем, когда область Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле представляет собой полуплоскость (Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле z, > 0). В дополнительном предположении непрерывности частных производных в Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле решение задачи Неймана сводится к решению задачи Дирихле для сопряженной гармонической функции. Две гармонические в области Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле функции Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле и Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , связанные условиями Даламбера-Эйлера называются сопряженными. Как мы знаем, для всякой функции Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле гармонической в односвязной области Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , можно найти сопряженную с ней гармоническую функцию Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле . Так как функция определяется своими частными производными с точностью до постоянного слагаемого, то совокупность всех гармонических функций Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле сопряженных с Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле дает формула: Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , (13) где С – произвольная действительная постоянная. Заметим, что в многосвязной области Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле интеграл (13) по контуру Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , определяет, вообще говоря, многозначную функцию: Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , (14) где Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле - произвольные целые числа, а Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле - интегралы вдоль замкнутых контуров Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , каждый из которых содержит внутри себя одну связную часть границы Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле : Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле . (15) Постоянные Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле называются периодами интеграла (13) или циклическими постоянными. Можно доказать, что решение задачи Неймана сводится к решению задачи Дирихле для сопряженной гармонической функции Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , где Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле носят название соответственно силовой функции и потенциала поля. Функции Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле и Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , представляющие собой регулярные решения системы Коши-Римана [6]: Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле , Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле (16) имеют частные производные всех порядков, т.е. аналитические функции Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле являются решением уравнения Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле . (17) Условие (17) – условие комплексной дифференцируемости функции Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле . §2. О задачах Шварца-Пуассона. а) Интеграл Шварца для круга

Диплом: Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.