на тему рефераты Информационно-образоательный портал
Рефераты, курсовые, дипломы, научные работы,
на тему рефераты
на тему рефераты
МЕНЮ|
на тему рефераты
поиск
Компьютерные технологии при изучении темы "Молекулярные перегруппировки"
p align="left">При действии азотистой кислоты на циклогептиламин образуется карбониевый катион (VI), который реагирует с водой, дает циклогептанол:

А претерпевая перегруппировку типа пинаколиновой, образует карбониевый ион (V), и из него циклогексилкарбинол:

3.Побочные реакции.

Перегруппировка Демьянова может сопровождаться образованием олефинов за счет отщепления протона от карбониевых ионов (V), (VI) или (VII):

Реагирует ли азотистая кислота с циклогексилметиламином или циклогептиламином, в реакционной смеси устанавливается равновесие между карбониевыми ионами 5 и 6. Это является причиной образования одинаковой смеси спиртов в обоих случаях. Таким образом, в данной перегруппировке побочная реакция-образование циклических олефинов.

Сужение и расширение циклов наблюдается не только при реакции олефинов с азотистой кислотой, но и в других случаях, когда образуются карбониевые ионы.

Н.Я.Демьянов и Н.М .Кижнер установили, что при действии бромистоводородной кислоты на циклопропилкарбинол образуется циклопропилбромметан и бромциклобутан, из циклобутанола при действии бромистоводородной кислоты получается циклопропилкарбинол:

Перегруппировка Наметкина.

1.Общие сведения о перегруппировке.

Переход б-метилкамфена в 4-метилизоборнеол в условиях кислотного катализа называется перегруппировкой Наметкина, иначе ее называют камфеновой перегруппировкой второго рода. Данная перегруппировка наблюдается в ряду терпенов.(21)

2.Механизм перегруппировки.

Камфеновая перегруппировка второго рода была открыта Наметкиным и Брюсовой.

Механизм перегруппировки Наметкина заключается в изомеризации углеродного скелета по типу ретропинаколиновой или, при обратном процессе, - пинаколиновой перегруппировки.

Рассмотрим механизм:

1.К б-метилкамфену (I) идет присоединение воды по двойной связи в соответствии с правилом Марковникова (II).

2.Дальнейшая протонизация дает оксониевый ион (III). Как известно, вода - это хорошо уходящая группа. Вследствие этого, соединение (III) превращается в открытый карбкатион (IV).

3.Затем собственно здесь начинается перегруппировка: атака нуклеофила (пары электронов) по положительному реакционному центру. То есть миграция группы, имеющей избыток электронов (?СН3) к атому, несущему положительный заряд (карбкатион), стабилизация карбкатиона, одновременный уход ?СН3 группы и атака его по карбкатиону обуславливает тот факт, что данная перегруппировка является внутримолекулярной (интрамолекулярной).

4. В месте ухода?СН3 группы появляется новый реакционный центр, который может сразу перейти в конечный продукт (4-метилиззоборнеол), либо сразу при взаимодействии с водой, либо претерпевающий перегруппировку (VII).

Таким образом, перегруппировка Наметкина является нуклеофильной, внутримолекулярной перегруппировкой.

3.Зависимость продуктов перегруппировки от различных факторов.

Состав и структура продуктов камфеновой перегруппировки определяется относительной скоростью ряда параллельных изомеризации. Например, для производных борнеола (VII) возможны: 1,2-гидридный сдвиг (а), 142-миграция группы СН3 (б), перемещение мостика (в) и сужение алицикла (г). Однако в основном реализуется путь (г), поскольку в случае (а) образуется менее стабильный вторичный карбкатион (IX), путь (б) запрещен Бредта правилом, по пути (в) получается термодинамически невыгодный четырехчленный цикл:

Карбкатион X может далее элиминировать протон, присоединить нуклеофил или претерпеть перегруппировку, например 1,2-сдвиг мостиковой группы СН3. Камфеновую перегруппировку применяют для синтеза различных производных терпенового ряда, например, камфоры из о-пинена, изоборнилацетата из камфена. Камфеновая перегруппировка I рода открыта Е. Е. Вагнером в 1899, II рода - С. С. Наметкиным в 1924.

Перегруппировка Вагнера -Меервейна

1.Общие сведения о перегруппировке.

Перегруппировка Вагнера -Меервейна является нуклеофильной, интрамолекулярной, стереоспецифической, протекает в ненасыщенной системе без изомеризации с миграцией от атома углерода к другому атому углерода. (22)

Перегруппировки Вагнера-Меервейна, общее название реакций, протекающих с 1,2-миграцией группы R(H, алкил или алициклич. фрагмент, арил, ацил, алкоксикарбонил и др.) к карбкатионному центру, возникающему в молекуле при нуклеофильном замещении, присоединении к кратной связи или элиминировании:

где Х-уходящая группа, например ОН, Nj, Hal, Y~ -внешний нуклеофил, Е+ - электрофильный агент, например Н + , AlkCO + .

Перегруппировку Вагнера-Меервейна относят к секстетным перегруппировкам и подразделяют на пинаколиповые и ретропинаколиновые перегруппировки. Родственной этой перегруппировке является Демьянова перегруппировка.

Перегруппировку Вагнера-Меервейна претерпевают, как правило, углеводороды и их производные, имеющие разветвленный углеродный скелет. В ряду алициклических соединений часто сопровождается расширением или сужением цикла. С данной перегруппировкой конкурируют другие реакции карбкатионов-фрагментация, депротонирование, присоединение нуклеофила. Протеканию перегруппировки способствуют увеличение диэлектрической проницаемости растрителя и уменьшение его основности, а также прочное связывание уходящего аниона, напр. в виде комплексных анионов А1С14-, SbClg.

2. Механизм перегруппировки.

Примером перегруппировки Вагнера -Меервейна является превращение борнеола в камфен под действием катализаторов кислотного характера, это камфеновые перегруппировки I рода; изомеризация, сопровождающая дегидратацию спиртов, например уравнение 1; превращениекамфолитовой кислоты в изо-лаунолевую (2).

3.Применение.

Перегруппировку Вагнера-Меервейна используют в промышленности, например при получении камфоры изпинена, изоборнилацетата из камфена, а также терпенофенолов - промежуточных продуктов в синтезе кедрола, санталидола и некоторых других душистых веществ.

Перегруппировка Вагнера-Меервейна открыта Е.Е. Вагнером в 1899 при исследовании превращения бициклических терпенов, подробно изучены X. Меервейном в 1910-1927.

Перегруппировка Курциуса

1.Общие понятия о перегруппировке.

Перегруппировка Курциуса основана на термическом разложении азидов карбоновых кислот в щелочной среде в изоционаты (23).

Данная перегруппировка является интрамолекулярной, стереоспецифической, нуклеофильной, протекает без изомеризации, с миграцией от атома углерода к атому азота в алифатическом ряду.

2.Механизм перегруппировки.

При нагревании азидов кислот происходит перегруппировка, механизм которой можно представить следующей схемой:

1.На первой стадии от молекулы азида(1) отщепляется азот, образуя при этом неустойчивое соединение (2)

2.Промежуточное неустойчивое соединение, образующееся сразу вслед за отщеплением молекулы азота, содержит атом азота с секстетом электронов, т. е., незаполненной (вакантной) орбиталью. Такие атомы электрофильны наподобие катионов, хотя формально они нейтральны. Они близки в этом отношении к атому углерода в карбенах и могут быть названы карбеноидными.

3.Далее алкил в этом промежуточном соединении мигрирует к азоту вместе с парой электронов связи, и они заполняют вакантную орбиталь азота. При этом на атоме азота не возникает отрицательного заряда, поскольку одновременно свободная пара электронов азота образует связь с углеродом, и образуется молекула алкилизоционата (эфира изоциановой кислоты(3)):

4.При дальнейшем гидролизе изоционата получаем алкилкарбоминовую кислоту (4), которая распадается с получением амина(5) и углекислого газа.

Само удаление молекулы азота из азида может тоже происходить одновременно или почти одновременно с начинающейся перегруппировкой, так что « карбеноидная молекула» ни на момент не существует в свободном состоянии.

Реакции Шмидта

1.Общие сведения о перегруппировке.

Перегруппировка Шмидта основана на превращении карбоновых кислот или их эфиров в изоционаты под действием азотистоводородной кислоты.

Перегруппировка Шмидта является нуклеофильной, интрамолекулярной, протекает без изомеризации с миграцией от атома углерода к атому азота в насыщенных системах, является не стереоспецифической.

2.Механизм перегруппировки(24)

1.Так как азотоводородная кислота содержит электронодефицитный атом азота, а на атоме кислорода гидроксильной группы имеется избыток электронной плотности, то происходит присоединение протона водорода с образованием соединения содержащего ион оксония(1)

2. Далее происходит отщепление молекулы воды с образованием карбкатиона (2).

3. К карбкатиону присоединяется азотистоводородная кислота, после чего образуется неустойчивое соединение (3).

4. Так как азот хорошая уходящая группа, то происходит отщепление азота с образованием неустойчивого соединения (4), которое изомеризуется с образованием изоционата(5). Как промежуточного соединения.

5.Реакция завершается гидратацией изоцианата, приводящей к карбаминовой кислоте, которая претерпевает самопроизвольное декарбоксилирование с образованием амина(6)

4.Если реакцию проводить в спиртовом, а не в водном растворе (азотистая кислота получается при этом из амилнитрита и хлористого водорода), то получаются уретаны(7)

3.Доказательства механизма перегруппировки.

Стадией, лимитирующей скорость реакции, является отщепление N2 от соединения(3), однако вполне вероятно, что отщепление N2 и миграция R происходят одновременно, т. е. здесь мы сталкиваемся со случаем внутреннего замещения по механизму SN1. Можно поэтому ожидать, что чем сильнее выражены электронодонорные свойства R, тем выше должна быть скорость реакции; это предположение было подтверждено при изучении скорости разложения кислот, содержащих в ядре электронодонорные заместители. В реакции азиды образуются при действии на гидразид нитрита натрия и кислоты; если реакцию проводить в спиртовом, а не в водном растворе (азотистая кислота получается при этом из амилнитрита и хлористого водорода), то получаются уретаны. В перегруппировках, протекающих с изменением углеродного скелета, мигрирующая группа сохраняет свою конфигурацию. Другая общая особенность таких реакций состоит в том, что если проводить перегруппировку двух различных, но очень сходных соединений в одном растворе, то не удается наблюдать образования смешанных продуктов. Это свидетельствует о том, что группа N в процессе миграции никогда не освобождается, т, е. все эти перегруппировки являются внутримолекулярными.

Изомеризация парафиновых углеводородов.

1.Общие сведения о перегруппировке.

При действии на парафиновые углеводороды катализаторов кислотного характера, подобно серной кислоте или смеси галоидного алюминия и соответствующего галоидоводорода , происходит изомеризация с образованием более разветвленного парафинового углеводорода, например:

Данная перегруппировка является нуклеофильной, интрамолекулярной, происходит с изомеризацией в алифатическом ряду с миграцией от атома углерода к другому атому углерода.

2.Механизм перегруппировки.

Изомеризация н- бутана в изобутан происходит только в присутствии следов олефина, кислорода или воды.

Эти примеси участвуют в первоначальном образовании небольших количеств вторичного н- бромистого бутила по одной из схем:

Подтверждением схемы б) служит тот факт, что при реакции бромистого алюминия с кислородом образуется бром.

То, что в реакции в) каталитическая активность связана главным образом не с гидроксилом, а с атомом брома вытекает из наблюдения, согласно которому соединение, хотя и обменивает дейтерий на водород н-бутана, но скорость этого обмена не пропорциональна скорости изомеризации.

После первоначального образования вторичного н- бромистого бутила реакция изомеризации протекает как цепной процесс с участием карбониевых ионов.

Механизм перегруппировки можно представить следующей схемой:

1.На первой стадии происходит взаимодействие бромистого алюминия с 2-бромбутаном (1), в результате чего образуется соединение (2), содержащий карбкатион.

2.Так как бром отошел вместе с парой электронов, то на атоме углерода возникает недостаток электронной плотности. Метильная группа , находящаяся в конце цепи вместе с парой электронов атакует атом углерода, на котором имеется недостаток электронной плотности, образуя при этом неустойчивое соединение (3).

3.В связи с большой активностью каркатиона он стремиться стабилизироваться за счет присоединения водорода от бутана, находящегося в реакционной смеси, в результате чего образуется изобутан (4) и карбониевый катион, т.е. идет цепной процесс(25).

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



© 2003-2013
Рефераты бесплатно, курсовые, рефераты биология, большая бибилиотека рефератов, дипломы, научные работы, рефераты право, рефераты, рефераты скачать, рефераты литература, курсовые работы, реферат, доклады, рефераты медицина, рефераты на тему, сочинения, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент.